研究生: |
姜宇智 Jiang,Yu-Zhi |
---|---|
論文名稱: |
多孔介質太陽熱能燃料重組器熱質傳遞研究 A study of the heat and mass transfer in a solar reformer with porous media |
指導教授: |
李明蒼
Lee, Ming-Tsang |
口試委員: |
林大偉
Lin, David-T.W. 楊愷祥 Yang, Kai-Shing |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 相變化熱傳 、甲醇-水蒸氣重組反應 、熱質耦合傳遞 |
外文關鍵詞: | Phase change heat transfer,, Steam methanol-reforming, Simultaneous heat and mass transfer |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究從概念上設計了一種以多孔碳紙作為基板的甲醇-水蒸氣重組反應器,使用在碳紙上成長的CuO/ZnO觸媒,以太陽光作為熱源,進行甲醇-水蒸氣重組反應。研究中設計了碳紙的吸水與蒸發過程的實驗,將實驗分為三個階段討論。吸水實驗為第一階段,蒸發實驗分為有液態水穩定流入碳紙的第二階段和液態水不再補充進入碳紙的第三階段。量測整個實驗過程中的碳紙聚光區溫度和整張碳紙的無因次含水量隨時間的變化。經由數值模擬對吸水實驗與蒸發實驗進行了分析,了解其中的熱流傳遞與質量傳遞現象。利用實驗數據及參考文獻中的方法計算多孔材料的有效擴散係數和質傳係數,代入到模擬中計算水在碳紙中的流動與蒸發。研究所得模擬結果和實驗結果合理相符。最後對產氫實驗使用模擬進行了理論上的分析,預測氫氣的產量與反應速率,以及一氧化碳的選擇性,完成評估此概念型太陽熱能多孔介質甲醇-水蒸氣重組器的效能。
In this study, the-conceptual design for a porous media solarthermal steam-methanol reformer was investigated. Carbon fiber paper based CuO/ZnO catalytic reactor is used to absorb and convert solar energy to hydrogen energy with reforming reaction. In the experiment section, the water transport and evaporation process in the carbon paper is designed. The experiment is divided into three stages: (1) The water absorption stage, (2) the evaporation stage in which the liquid water flows into the carbon paper steadily and (3) the evaporation stage that the liquid water is no-longer supplemented into the carbon paper. During the experiment, the temperature of the carbon paper and the dimensionless water content of the carbon paper were measured with respect to time. The water absorption experiment and evaporation in the carbon fiber paper were analyzed numerically to further understand the heat and mass transport phenomena. The effective mass transfer coefficients of the porous material were calculated using the experimental data and the methods from the references, and were substituted into the simulation to calculate the flow and evaporation of water in the carbon paper. The simulation results obtained in the study are in reasonable agreement with the experimental results. Finally, simulation is conducted to predict the hydrogen production and reaction rate, as well as the selectivity of carbon monoxide in this solarthermal porous reformer. The efficiency of this conceptual solar thermal porous media methanol-steam reformer is then evaluated and discussed.
[1] Y. Ogniewicz, C. L. Tien, “Analysis of condensation in porous insulation,” J. Heat Mass Transfer, vol.24, pp.421-429, 1981.
[2] S. Motakef, M. A. El-Masri, “Simultaneous heat and mass transfer with phase change in a porous slab,” J. Heat Mass Transfer, vol.29 (10), pp.1503-1512, 1986.
[3] A. P. Shapiro, S. Motakef, “Unsteady heat and mass transfer with phase change in porous slab: analytical solutions and experimental results,” J. Heat Mass Transfer, vol.33 (1), pp.163-173, 1990.
[4] Q. Jiang, R. K. N. D. Rajapakse. “A boundary integral equation formulation for coupled heat-moisture transfer in porous media,” International Journal of Engineering Science, vol.29, pp.889-900, 1991.
[5] J. Zuecoa, L. M. López-Ochoa, “Network numerical simulation of coupled heat and moisture transfer in capillary porous media,” International Communications in Heat and Mass Transfer, vol.44, pp.1-6, 2013.
[6] A. K. Sekone, Y. Y. Hung, C. T. Yeh, M. T. Lee. “Experimental study and analysis of porous thin plate drying in a convection dryer,” International Communications in Heat and Mass Transfer, vol.68, pp.200-207, 2015.
[7] Y. Jabbari, E. Tsotsas, C. Kirsch, A. Kharaghani. “Determination of the moisture transport coefficient from pore network simulations of spontaneous imbibition in capillary porous media,” Chemical Engineering Science, vol.207, pp.600-610, 2019.
[8] V. Murali, G. Venditti, Jos C. H. Zeegers, A. A. Darhuber. “Inkjet deposition of lines onto thin moving porous media - experiments and simulations,” International Journal of Heat and Mass Transfer, vol.176, pp.121-126, 2021.
[9] B. Lindstrom, J. Agrell, L. J. Pettersson, “Combined methanol reforming for hydrogen generation over monolithic catalysts,” Chemical Engineering Journal, vol.93, pp.91-101, 2003
[10] N. Hotz, M. T. Lee, C. P. Grigoropoulos, S. M. Senn, D. Poulikakos, “Exergetic analysis of the fuel cell micropowerplants fed by methanol,” International Journal of Heat and Mass Transfer, vol.49, pp.2397-2411, 2006.
[11] M. T. Lee, R. Greif, C. P. Grigoropoulos, H. G. Park, F. K. Hsu. “Transport in packed-bed and wall-coated steam-methanol reformers,” Journal of Power Sources, vol.166, pp.194-201, 2007.
[12] M. T. Lee, M. Werhahn, D. J. Hwang, N. Hotz, R. Greif, D. Poulikakos, C. P. Grigoropoulos. ‘’Hydrogen production with a solar steam–methanol reformer and colloid nanocatalyst,” International Journal of Hydrogen Energy, vol.35, pp.118-126, 2010.
[13] K. F. Lo, S. C. Wong. “A passively-fed methanol steam reformer with catalytic combustor heater,” International Journal of Hydrogen Energy, vol.36, pp.10719-10726, 2011.
[14] X. Shi, F. Wang, Z. Cheng, H. Liang, Y. Dong, X. Chen. “Numerical analysis of the biomimetic leaf-type hierarchical porous structure to improve the energy storage efficiency of solar driven steam methane reforming”. International Journal of Hydrogen Energy, vol.46, pp.17653-17665, 2021.
[15] J. Kozeny, “Ueber kapillare Leitung des Wassers im Boden,” Royal Academy of Science, Vienna, Proc. Class I, vol.136, pp.271-306, 1927.
[16] A. Corey. “Mechanics of Immiscible Fluids in Porous Media. Water Resources Publications”, 1994.
[17] J. C. Amphlett, “Hydrogen production by the catalytic steam reforming of methanol part 1: The thermodynamics,” The Canadian Journal of Chemical Engineering, vol.59, pp.720-727, 1981.
[18] H. Nakajima, D. Lee, M. T. Lee, C. P. Grigoropoulos, “Hydrogen production with CuO/ZnO nanowire catalyst for a nanocatalytic solar thermal steam-methanol reformer,” International Journal of Hydrogen Energy, vol.41, pp.16927-16931, 2016.
[19] M. T. Lee, C. P. Grigoropoulos, R. Greif, “A study of the transport phenomena in a wall-coated micro steam-methanol reformer,” International Journal of Hydrogen Energy, vol.39, pp.2008-2017, 2014
[20] 陶文銓,傳熱學,高等教育出版社,2019
[21] 劉偉,范愛武,黃曉明,多孔介質傳熱傳質理論與應用,科學出版社,2006
[22] 沈軒瑢,“太陽熱能甲醇水汽重組產氫研究,” 國立中興大學機械工程學系研究所,台中市,2020