簡易檢索 / 詳目顯示

研究生: 陳亮愷
Chen, Liang-Kai
論文名稱: The determinations of inorganic elements in nano, submicron and micron airborne particulates in Taiwan area
台灣地區大氣奈米、次微米及微米微粒中無機元素之成分分析
指導教授: 王竹方
Wang, Chu-Fang
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 126
中文關鍵詞: 電子式低壓衝擊器雷射剝蝕感應耦合電漿質譜儀中部科學工業園區鹽水蜂炮
外文關鍵詞: ELPI, LA-ICP-MS, Central Taiwan Science Park, Yanshuei Fireworks
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇研究使用電子式低壓衝擊器(ELPI)結合雷射剝蝕感應耦合電漿質譜儀(LA-ICP-MS)技術來偵測大氣奈米(0.030~0.108μm)、次微米(0.108~1.000μm)及微米微粒(1.000~9.970μm)中的無機元素。使用不同的雷射剝蝕模式將收集在濾紙上的大氣微粒氣化達到完全剝蝕的效果。研究結果發現:在雷射波長213nm 的條件下,將雷射系統參數設定為100%雷射能量,1.5mm 離焦距離(defocus distance),10Hz重複速率(repetition rate)和8秒停留時間(dwell time),可以完全剝蝕採集在濾紙上的懸浮微粒樣品。實驗室製備的標準濾紙樣品是在實驗中將標準溶液滴在濾紙上模擬ELPI所收集到的樣品。分析方法的偵測極限範圍介於0.002奈克(Cd)至1.062奈克(Si)之間。重複分析(五次)標準品濾紙的結果顯示其精密度(RSD)範圍為3~18%。研究過程中應用本分析方法偵測在中部科學園區附近測站所收集的奈米、次微米及微米微粒中的元素濃度。分析元素的範圍包含Na、Mg、Al、Si、K、Ca、Fe、Ti、V、Cr、Mn、Ni、Cu、Zn、As、Sr、Cd、Ba 及 Pb等19種主要及次要元素。研究結果顯示,細微粒(<1μm)中的As跟Si可能來自於科學園區內半導體產業或玻璃基板製造業的排放;細微粒中高含量的K跟Zn與附近焚化爐的排放有相關;Pb主要來自於交通的貢獻;而Cr、V、Mn、Ni、Cu 及 Cd則與傳統工業區的排放有關。為了探討因施放煙火對大氣中懸浮微粒的貢獻,本研究亦嘗試針對元宵節的鹽水蜂炮進行空氣污染調查。結果顯示,蜂炮施放後空氣中的元素濃度為平日的1.9~20倍高。比較不同元素在蜂炮施放前後的質量粒徑分佈情形(mass size distribution),顯示K、V、Cr、Mn、Cu、Zn、As、Sr、Cd、Ba 及 Pb等元素的次微米微粒濃度在蜂炮施放後有明顯升高的現象。


    This study proposed a novel method for determining inorganic elements in nano (0.030~0.108μm), submicron (0.108~1.000μm) and micron (1.000~9.970μm) airborne particulates collected by electrical low pressure impactor (ELPI) using laser ablation- inductively coupled plasma-mass spectrometry (LA-ICP-MS). Different grid laser patterns have been performed to completely ablate the airborne particulates collected on the filter. It was found that a 213nm laser with 100% laser energy and 1.5mm defocus distance, at 10Hz repetition rate and 8 seconds dwell time can ablate the real sample spots appropriately. Laboratory-made standard filter samples were prepared by dropping liquid standard solution on the filter to simulate samples collected by ELPI. The limits of detection ranged from 0.002ng for Cd to 1.062 ng for Si. The mean relative standard deviation (RSD) for five replicates of standard filter ranged from 3 to 18%. The proposed analytical method was applied to determine elemental concentrations of nano, submicron, and micron particles collected from the surrounding of Central Taiwan Science Park (CTSP). Total of 19 major and minor elements, including Na, Mg, Al, Si, K, Ca, Fe, Ti, V, Cr, Mn, Ni, Cu, Zn, As, Sr, Cd, Ba and Pb were determined in this work. The results showed that nearby CTSP was possibly responsible for As and Si in fine particles (<1μm). High contents of K and Zn in fine particles were strongly associated with the emission from incinerator. The Pb contents in fine particles were mainly from road traffic, while the Cr, V, Mn, Ni, Cu and Cd in fine particles might be emitted from the traditional industries. Otherwise, to understand the chemical composition of suspended particles generated by rocket firecrackers or fireworks, a case study during Yanshuei Fireworks was also performed by the proposed method. The elemental concentrations in aerosol samples (0.03~9.97μm) collected by ELPI after the fireworks were about 1.9~20 times higher than those of normal days. Comparison of particle mass size distributions for each analyte element showed that the concentrations of K, V, Cr, Mn, Cu, Zn, As, Sr, Cd, Ba and Pb increased significantly in the submicron size range after the fireworks.

    中文摘要.................................................І ABSTRACT................................................II 謝誌.....................................................Ш LIST OF TABLES..........................................VI LIST OF FIGURES.......................................VIII CHAPTER 1 INTRODUCTION...........................................1 1.1 General Overview...................................1 1.2 Aim of This Study..................................4 2 LITERATURE REVIEW......................................7 2.1 Health Effects of Airborne Particulates............7 2.2 Size Segregation of Particles by ELPI..............9 2.3 Elemental Determination of Airborne Particulates by Conventional Method...............................14 2.4 Elemental Determination of Airborne Particulates by LA-ICP-MS.........................................17 2.5 Identification of Emission Sources by Indicator Elements..........................................19 2.6 Identification of Local Sources by Ultrafine Particles.........................................21 2.7 Air Quality Problems in Central Taiwan............24 2.8 The Impact of Fireworks on Airborne Particulates..27 3 EXPERIMENTAL AND METHODS..............................30 3.1 Reagents and Materials............................30 3.2 Preparation of Standards..........................31 3.3 Sampling Sites in Central Taiwan..................33 3.4 Sampling Site in Tainan...........................36 3.5 Sampling Strategy.................................38 3.6 Analysis Strategy.................................40 4 RESULTS AND DISCUSSION................................43 4.1 LA-ICP-MS Analysis................................43 4.1.1 Optimization of Analytical Conditions.........43 4.1.2 Qualitative Analysis..........................50 4.1.3 Calibration Graphs for LA-ICP-MS Analysis.....54 4.1.4 Limit of Detection (LOD)......................57 4.1.5 Precision.........................................58 4.2 Characterization of Airborne Particulates in Central Taiwan............................................60 4.2.1 Elemental Concentrations of Size-Segregated Particles Surrounding CTSP....................60 4.2.2 Mass Size Distributions of Particulate Elements Collected by ELPI.............................81 4.2.3 Enrichment Factors of Elements in Size-Segregated Particles.....................................88 4.2.4 Analysis of Particulate Element Sources.......91 4.3 Air Pollution Caused by Tainan Yanshuei Fireworks.94 4.3.1 Elemental Concentrations of Size-Segregated Particles.....................................94 4.3.2 Elemental Concentrations in Aerosol Samples Collected by ELPI.............................98 4.3.3 Particle Mass Size Distribution............. 100 5 CONCLUSIONS AND FUTURE DIRECTIONS....................104 5.1 Conclusions......................................104 5.2 Future Directions............................... 106 REFERENCE..............................................107 APPENDIX...............................................116

    Adler, K.B., Fischer, B.M., 1994. Interactions between respiratory epithelial cells and cytokines: relationships to lung inflammation. Annals of the New York Academy of Science 725, 128–145.

    Allen, A.G., Nemitz, E., Shi, J.P., Harrison, R.M., Greenwood, J.C., 2001. Size distribution of trace metals in atmospheric aerosols in the United Kingdom. Atmospheric Environment 35, 4581–4591.

    Anastasio, C., Martin, S.T., 2001. In Nanoparticles and The Environment. In: Banfield, J.F., Navrotsky, A. (eds.): Reviews in Mineralogy and Geochemistry 44, Mineralogical Society of America, Washington, DC, 293–349.

    Al-Momani, I.F., 2003. Trace elements in atmospheric precipitation at Northern Jordan measured by ICP-MS: acidity and possible sources. Atmospheric Environment 37, 4507–4515.

    Adachi, K., Tainosho, Y., 2004. Characterization of heavy metal particles embedded in tire dust. Environment International 30, 1009–1017.

    Bowen, H.J.M., 1966. Trace elements in biochemistry. Academic Press, New York.

    Buzorius, G., Zelenyuk, A., Brechtel, F., Imre, D., 2002. Simultaneous determination of individual ambient particle size, hygroscopicity and composition. Geophysical Research Letters 29, 1974–1978.

    Conkling, J.A., 1985. Chemistry of Pyrotechnics: Basic Principles and Theory. Marcel Dekker, Inc., New York.

    Cullen, W.R., Reimer, K.J., 1989. Arsenic speciation in the environment. ChemicalReviews 89, 713–764.

    Chester, R., Nimmo, M., Preston, M.R., 1999. The trace metal chemistry of atmospheric dry deposition samples collected at Cap Ferrat: a coastal site in the western Mediterranean. Marine Chemistry 68, 15–30.

    Chein, H.M., Hsu, Y.D., Aggarwal, S.G., Chen, T.M., Huang, C.C., 2006. Evaluation of arsenical emission from semiconductor and opto-electronics facilities in Hsinchu, Taiwan. Atmospheric Environment 40, 1901–1907.

    Canagaratna, M.R., Jayne, J.T., Jimenez, J.L., Allan, J.D., Alfarra, M.R., Zhang, Q., et al., 2007. Mass Spectrometry Reviews 26, 185–222.

    Central Taiwan Science Park official website, http://www.ctsp.gov.tw/

    Central Weather Bureau, Taiwan, http://www.cwb.gov.tw/

    Divita, F., Ondov, J.M., Suarez, A.E., 1996. Size spectra and atmospheric growth of V-containing aerosol in Washington DC. Aerosol Science and Technology 25, 256–273.

    Dekati website, http://www.dekati.com/cms/elpi/

    European Community. 1992. European Community Deskbook. Washington, D.C.: Environmental Law Institute.

    Englyst, V., Lundstrom, N.G., Gerhardsson, L., Rylander, L., Nordberg, G., 2001. Lung cancer risks among lead smelter workers also exposed to arsenic. Science of the Total Environment 273, 77–82.

    Fang, G.C., Chang, C.N., Chu C.C., Wu, Y.S., Fu, P.P.I., Yang, I.L., Chen, M.H., 2003. Characterization of particulate, metallic elements of TSP, PM2.5 and PM2.5-10 aerosols at a farm sampling site in Taiwan, Taichung. Science of the Total Environment 308, 157–166.

    Fang, G.C., Wu, Y.S., Fu, P.P.C., Chang, C.N., Chen, M.H., Ho, T.T., Huang, S.H., Rau, J.Y., 2005. Metallic elements study of fine and coarse particulates using a versatile air pollutant system at a traffic sampling site. Atmospheric Research 75, 1– 14.

    Fang, G.C., Wu, Y.S., Lee, W.J., Chou, T.Y., Lin, I.C., 2007. Study of ambient air particulates pollutants near Taichung airport sampling site in central Taiwan. Journal Hazardous Materials 144, 492–498.

    Gilmour, P.S., Brown, D.M., Lindsay, T.G., Beswich, P.H., MacNee, W., Donaldson, K., 1996. Adverse health effects of PM10 particles: involvement of iron in generation of hydroxyl radical. Occupational and Environmental Medicine 53, 817–822.

    Günther, D., Jackson, S.E., Longerich, H.P., 1999. Spectrochim. Acta Part B 54, 381.

    Gligorovski, S., Van Elteren, J.T., Grgic, I., 2008. A multi-element mapping approach for size-segregated atmospheric particles using laser ablation ICP-MS combined with image analysis. Science of the total environment xx, xxx-xxx.

    Hileman, B., 1981. Particulate matter: the inevitable variety. Environmental Science and Technology 15, 983–986.

    Hughes, L.S., Cass, G.R., Gone, J., Ames, M., Olmez, I., 1998. Physical and chemical characterization of atmospheric ultrafine particles in the Los Angeles area. Environmental Science and Technology 32, 1153–1161.

    Harrison, R.M., Shi, J.P., Xi, S., Khan, A., Mark, D., Kinnersley, R., Yin, J., 2000. Measurement of number, mass and size distribution of particles in the atmosphere. Philosophical Transactions of the Royal Society A 358, 2567–2579.

    Helmenstine, A.M., About.com Guide to Chemistry since 2001. Chemistry of Firework Colors: Firework Color Production and List of Colorants. http://chemistry.about.com/od/fireworkspyrotechnics/a/fireworkcolors.htm/

    Jaenicke, R., 1993. Tropospheric aerosols. In: Hobbs, P.V. (Ed.), Aerosol-Cloud-Climate Change Interactions. Academic Press, San Diego, USA, 1–31.

    Kulshrestha, U.C., Saxena, A., Kumar, N., Kumari, K.M., Srivastava, S.S., 1994. Measurement of heavy metals in the ambient air of Agra. Indian Journal of Environmental Protection 14, 685–687.

    Kittelson, D.B., Watts, W.F., Johnson, J.P., 2004. Nanoparticle emissions on Minnesota highways. Atmospheric Environment 38, 9–19.

    Kulshrestha, U.C., Nageswara Rao, T., Azhaguvel, S., Kulshrestha, M.J., 2004. Emissions and accumulation of metals in the atmosphere due to crackers and sparkles during Diwali festival in India. Atmospheric Environment 38, 4421–4425.

    Karanasiou, A.A., Sitaras, I.E., Siskos, P.A., Eleftheriadis, K., 2007. Size distribution and sources of trace metals and n-alkanes in the Athens urban aerosol during summer. Atmospheric Environment 41, 2368–2381.

    Kulkarni, P., Chellam, S., Flanagan, J.B., Jayanty, R.K.M., 2007. Microwave digestion—ICP-MS for elemental analysis in ambient airborne fine particulate matter: Rare earth elements and validation using a filter borne fine particle certified reference material. Analytica Chimica Acta 599, 170–176.

    Lancaster, R., Butler, R., Lancaster, J., Shimizu, T., Smith, T., 1998. Fireworks: Principles and Practice. Chemical Publishing Company, New York.

    Lin, C.C., Chen, S.J., Huang, K.L., Hwang, W.I., Chang-Chien, G.P., Lin, W.Y., 2005. Characteristics of metals in nano/ultrafine/fine/coarse particles collected beside a heavily trafficked road. Environmental Science and Technology 39, 8113–8122.

    Mamuro, T., Mizohata, A., Kubota, T., 1979b. Elemental composition of suspended particles released from various boilers. Annual Report of the Radiation Center of Osaka Prefecture 20.

    Mclain, J.H., 1980. Pyrotechnics from the viewpoint of solid state chemistry. The Franklin Institute Press, 155–157.

    Milford J.B., Davidson C.I., 1985. The size of particulate trace elements in the atmosphere. Environmental Science and Technology 35, 1249–1260.

    Monn, C., Becker, S., 1999. Cytotoxicity and pro-inflammatory cytokines from human monocytes exposed to fine (PM2.5) and coarse particles (PM10-2.5) in indoor and outdoor air. Toxicology and Applied Pharmacology 155, 245–252.

    Mészáros, E., 1999. Fundamentals of Atmospheric Aerosol Chemistry. Budapest: Académiai Kiadó.

    Maricq, M.M., Podsiadlik, D.H., Chase, R.E., 2000. Size distribution of motor vehicle exhaust PM: a comparison between ELPI and SMPS measurements. Aerosol Science and Technology 33, 239–260.

    Marjamäki, M., Keskinen, J., Chen, D.R., Pui, D.Y.H., 2000. Performance evaluation of the electrical low-pressure impactor (ELPI). Journal of Aerosol Science 31, 249–261.

    Marcazzan, G.M., Vaccaro, S., Valli, G., Vecchi, R., 2001. Characterisation of PM10 and PM2.5 particulate matter in the ambient air of Milan (Italy). Atmospheric Environment 35, 4639–4650.

    Manoli, E., Voutsa, D., Samara, C., 2002. Chemical characterization and source identification/apportionment of fine and coarse air particles in Thessaloniki, Greece. Atmospheric Environment 36, 949–961.

    Moreno, T., Querol, X., Alastuey, A., Minguillón, M.C., Pey, J., Rodríguez, S., Miró, J.V., Felis, C., Gibbons, W., 2007. Recreational atmospheric pollution episodes: inhalable metalliferous particles from fireworks displays. Atmospheric Environment 41, 913–922.

    Okuda, T., Kato, J., Mori, J., Tenmoku, M., Suda, Y., Tanaka, S., He, K., Ma, Y., Yang, F., Yu, X., Duan, F., Lei, Y., 2004. Daily concentrations of trace metals in aerosols in Beijing, China, determined by using inductively coupled plasma mass spectrometry equipped with laser ablation analysis, and source identification of aerosols. Science of the Total Environment 330, 145–158.

    Pacyna, J.M., 1986. Atmospheric trace elements from natural and anthropogenic sources. In: Nriagu, J.O., Davidson, C.I. (eds.): Toxic Metals in the Atmosphere. Wiley, New York.

    Pinto, J.P., Stevens, R.K., Willis, R.D., Kellogg, R., Mamane, Y., Novak, J., Santroch, J., Benes, I., Lenicek, J., Bures, V., 1998. Czech air quality monitoring and receptor modeling study. EnvironmentalScience and Technology 32, 843–854.

    Pakkanen, T.A., Kerminen, V.M., Korhonen, C.H., Hillamo, R.E., Aarnio, P., Koskentalo, T., Maenhaut, W., 2001. Urban and ruralul trafine (PM0.1) particles in the Helsinki area. Atmospheric Environment 35, 4593–4607.
    Pope, C.A., III, Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., Thurston, G.D., 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. The Journal of the American Medical Association 287, 1132–1141.

    Pekney, N.J., Davidson, C.I., 2005. Determination of trace elements in ambient aerosol samples. Analytica Chimica Acta 540, 269–277.

    Querol, X., Viana, M., Alastuey, A., Amato, F., Moreno, T., Castillo, S., Pey, J., de la Rosa, J., Sánchez de la Campa, A., Artíñano B., Salvador, P., García Dos Santos, S., Fernández-Patier, R., Moreno-Grau, S., Negral, L., Minguillón, M.C., Monfort, E., Gil, J.I., Inza, A., Ortega, L.A., Santamaría, J.M., Zabalza, J., 2007. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmospheric Environment 41, 7219–7231.

    Ristimäki, J., Virtanen, A., Marjamäki, M., Rostedt, A., Keskinen, J., 2002. On-line measurement of size distribution and effective density of submicron aerosol particles. Aerosol Science 33, 1541–1557.

    Samara, C., Kouimtzis, Th., Katsoulos, G., 1994a. Characterization of airborne particulate matter in Thessaloniki, Greece. Part II: a multivariate modelling approach for the source apportionment of heavy metal concentrations within total suspended particles. Toxicological and Environmental Chemistry 41, 221–232.

    Swietlicki, E., Puri, S., Hansson, H.C., Edner, H., 1996. Urban air pollution source apportionment using a combination of aerosol and gas monitoring techniques. Atmospheric Environment 30, 2795–2809.

    Shi, J.P., Khan, A.A., Harrison, R.M., 1999. Measurements of ultrafine particle concentration and size distribution in the urban atmosphere. Science of the Total Environment 235, 51–64.

    Singh, M., Jaques, P.A., Sioutas, C., 2002. Size distribution and diurnal characteristics of particle-bound metals in source and receptor sites of the Los Angeles Basin. Atmospheric Environment 36, 1675–1689.

    Sander, P.G., Xu, N., Dalka, T., Maricq, M.M., 2003. Airborne brake wear debris: size distributions, composition, and a comparison of dynamometer and vehicle tests. Environmental Science and Technology 37, 4060–4069.

    Shi, H.S., Kan, L.L., 2009. Characteristics of municipal solid wastes incineration (MSWI) fly ash–cement matrices and effect of mineral admixtures on composite system. Construction and Building Materials xxx, xxx-xxx.

    Tanaka, S., Yasushi, N., Sato, N., Fukasawa, T., Santosa, S.J., Yamanaka, K., Ootoshi, T., 1998. Rapid and simultaneous multi-element analysis of atmospheric particulate matter using inductively coupled plasma mass spectrometry with laser ablation sample introduction. Journal of Analytical Atomic Spectrometry 13, 135–140.

    Thomas, V.M., Socolow, R.H., Fanelli, J.J., Spiro, T.G., 1999. Effects of reducing lead in gasoline: an analysis of the international experience. Environmental Science and Technology 33, 3942–3948.

    Tripathi, R.M., Kumar, A.V., Manikandan, S.T., Bhalke, S., Mahadevan, T.N., Puranik, V.D., 2004. Vertical distribution of atmospheric trace metals and their sources at Mumbai, India. Atmospheric Enviornment 38, 135–146.

    US EPA, 2004. Air Quality Criteria for Particulate Matter 2004. US Environmental Protection Agency, Washington, DC, EPA 600/P-99/002aF-bF.

    Utsunomiya, S., Jensen, K.A., Keeler, G.J., Ewing, R.C., 2004. Direct identification of trace metals in fine and ultrafine particles in the Detroit urban atmosphere. Environmental Science and Technology 38, 2289–2297.

    Viren, J., Silvers, A., 1999. Nonlinearity in the lung cancer doseresponse for airborne arsenic: apparent confounding by year of hire in evaluating lung cancer risks from arsenic exposure in Tacoma smelter workers. Regulatory Toxicology and Pharmacology 30, 117–129.

    Vecchi, R., Marcazzan, G., Valli, G., 2007. A study on nighttime–daytime PM10 concentration and elemental composition in relation to atmospheric dispersion in the urban area of Milan (Italy). Atmospheric Environment 41, 2136–2144.

    Vecchi, R., Bernardoni, V., Cricchio, D., D’Alessandro, A., Fermo, P., Lucarelli, F., Nava, S., Piazzalunga, A., Valli, G., 2008. The impact of fireworks on airborne particles. Atmospheric Environment 42, 1121–1132.

    Wilson, W.E., Suh, H.H., 1997. Fine particles and coarse particles: concentration relationships relevant to epidemiologic studies. Journal of Air and Waste Management Association 47, 1238–1249.

    WHO, World Health Organization. Guidelines for Air Quality, Geneva, 2000.

    Weckwerth, G., 2001. Verification of traffic emitted aerosol components in the ambient air of Cologne (Germany). Atmospheric Environment 35, 5525–5536.

    Wang, Y.F., Huang, K.L., Li, C.T., Mi, H.H., Luo, J.H., Tsai, P.J., 2003. Emissions of fuel metals content from a diesel vehicle engine. Atmospheric Environment 37, 4637–4643.

    Wåhlin, P., Berkowicz, R., Palmgren, F., 2006. Characterisation of traffic-generated particulate matter in Copenhagen. Atmospheric Environment 40, 2151–2159.

    Wang, Y., Zhuang, G., Xua, C., An, Z., 2007. The air pollution caused by the burning of fireworks during the lantern festival in Beijing. Atmospheric Environment 41, 417–431.

    Wang, Q., Yan, J., Tu, X., Chi, Y., Li, X., Lu, S., Cen, K., 2009. Thermal treatment of municipal solid waste incinerator fly ash using DC double arc argon plasma. Fuel 88, 955–958.

    Yu, D., Xu, M., Yao, H., Sui, J., Liu, X., Yu, Y., Cao, Q., 2007. Use of elemental size distributions in identifying particle formation modes. Proceedings of the Combustion Institute 31, 1921–1928.

    Yoshiie, R., Yamamoto, Y., Uemiya, S., Kambara, S., Moritomi, H., 2008. Simple and rapid analysis of heavy metals in sub-micron particulates in flue gas. Powder Technology 180, 135–139.

    Zhu, Y., Hinds, W.C., Kim, S., Sioutas, C., 2002. Concentration and size distribution of ultrafine particles near a major highway. Journal of the Air and Waste Management Association 52, 1032–1042.

    Zhu, Y., Hinds, W.C., Kim, S., Shen, S., Sioutas, C., 2002. Study of ultrafine particles near a major highway with heavy-duty diesel traffic. Atmospheric Environment 36, 4323–4335.

    Zhang, K.M., Wexler, A.S., Zhu, Y.F., Hinds, W.C., Sioutas, C., 2004. Evolution of particle number distribution near roadways. Part II: the “Road-to-Ambient” process. Atmospheric Environment 38, 6655–6665.

    Zervas, E., Dorlhene, P., Forti, L., Perrin, C., Momique, J.C., Monier, R., Ing, H., Lopez, B., 2006. Exhaust gas particle mass estimation using an electrical low pressure impactor. Energy and Fuels 20, 498–503.

    Zhang, L., Ninomiya, Y., Yamashita, T., 2006. Formation of submicron particulate matter (PM1) during coal combustion and influence of reaction temperature. Fuel 85, 1446–1457.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE