簡易檢索 / 詳目顯示

研究生: 龔俐
Kung, Li
論文名稱: 以一維最佳粒子群模糊演算法建置最佳再生能源組合推薦系統
An Approach of 1-Dimension PSO with Fuzzy C-means for the Optimal Combination of Energy Resources in a Recommender System
指導教授: 王小璠
Wang, Hsiao Fan
口試委員: 廖崇碩
Liao, Chung Shou
徐昕煒
Hsu, Hsin Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 50
中文關鍵詞: 推薦系統一維搜尋法模糊粒子群演算法使用者經驗
外文關鍵詞: one-dimension Particle Swarm Optimization
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於近年來的能源危機,越來越多政府及私人機關提倡應用再生能源來解決石化能源開採限制及能源議題。然而卻缺乏系統性的資料分析,並提供給使用者相關意見作為參考。推薦系統在電子商務上已行之有年,然而目前為止卻沒有將推薦系統運用於能源議題上,尤其使用者經驗的頁面設計仍然缺乏。因此,本研究提出一個以企業為導向的能源組合推薦系統,其整合電力預測、再生能源預測以及製造模式之資料模組及模型模組為基本架構。為了區分不同類型的使用者,本研究提出一分類法以一維模糊粒子群演算法搜尋求解,並以國立清華大學為企業架構基礎推薦最佳再生能源配比及未來電力需求,以評估本系統之適用性。


    Owing to the over-exploitation of fossil fuels, many governments and companies have been promoting renewable energy to resolve the limitation of fossil energy and environmental issues. Nevertheless, lacks of systematic analysis to provide useful information. A Recommender System is a popular approach to promote products in Electronic Commerce. Till now there is no research developed a recommender system for environmental protection. In addition, user-friendly interface of recommender system is still lacking. Therefore, this research aims to construct an enterprise-oriented web recommender system to cope with environmental issues. In order to identify the users, the system has proposed a modules of clustering analysis called one-dimension Particle Swarm Optimization with Fuzzy C-means. The proposed web recommender system has integrated data-module and model-module for electricity, renewable energy prediction and generation. Based on the forecasted electricity consumption, a case of National Tsing Hua University is provided as an enterprise with the recommendation of the best investment of renewable energy to illustrate and validate the system.

    ABSTRACT IV 中文摘要 V ACKNOWLEDGEMENT VI FIGURE & TABLE CAPTIONS VII LIST OF NOTATIONS IX CHAPTER 1 INTRODUCTION 1 CHAPTER 2 LITERATURE REVIEW 4 2.1 RECOMMENDER SYSTEMS 4 2.2 EXISTED RENEWABLE ENERGY PLATFORMS 7 2.2.1 The World Bank 7 2.2.2 United Nations Statistics Division (UNSD) 8 2.2.3 International Energy Agency (IEA) 9 2.2.4 Comparison of Renewable Energy Platforms 10 2.3 CLUSTERING ANALYSIS 12 2.3.1 K-means Clustering 13 2.3.2 Fuzzy C-means Clustering 14 2.4 PARTICLE SWARM OPTIMIZATION 15 2.5 USER EXPERIENCE 17 2.6 SUMMARY AND CONCLUSION 19 CHAPTER 3 THE PROPOSED SYSTEM 20 3.1 FRAMEWORK OF THE PROPOSED RECOMMENDER SYSTEM FOR PRIVATE ENERGY GENERATION STRATEGY 21 3.2 ONE DIMENSION PSO WITH FUZZY C-MEANS 22 3.2.1 Notations 23 3.2.2 Steps of one dimension PSO with Fuzzy C-means 24 3.3 PERFORMANCE MEASURE 25 3.4 SUMMARY AND CONCLUSION 25 CHAPTER 4 AN ILLUSTRATIVE APPLICATION 28 4.1 BACKGROUND DESCRIPTION 28 4.2 SCENARIO EXAMPLE 29 4.2.1 User Research 29 4.2.2 Illustration of the one dimension PSO with Fuzzy C-means 35 4.3 WEB PLATFORM 39 4.4 SUMMARY AND CONCLUSION 45 CHAPTER 5 CONCLUSION & FUTURE WORK 46 5.1 SUMMARY AND CONCLUSION 46 5.2 FUTURE WORK 46 REFERENCES 48

    1. 林文綺, (2015)。「應用劇本實驗室與服務創新案例介紹」,國立清華大學應用劇本實驗室。
    2. 梁啟源,(2013)。「國際油價飆漲與我國能源價格政策」,國立台南大學環境與生態學院。
    3. 蘇木椿、王小璠、李允中,(2012)。「模糊理論及其應用」第三版,全華。
    4. Bezdek, James C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York.
    5. Burke, R. (2007). Hybrid Web Recommender Systems, The Adaptive Web Methods and Strategies of Web Personalization, Springer-Verlag Berlin, Heidelberg, 377-408.
    6. Dhillon, I. S., Modha, D. M. (2001). “Concept Decompositions for Large Sparse Text Data Using Clustering,” Machine Learning 42 (1), 143-175.
    7. Faber, V. (1994). “Clustering and the Continuous k-Means Algorithm,” Los Alamos Science, vol.22, 138-144.
    8. Garrett, J. J. (2000). The Elements of User Experience, New Riders Publishing.
    9. Ge, H. W., Sun, L., Liang, Y. C., and Qian, F. (2008). “An Effective PSO and AIS -Based Hybrid Intelligent Algorithm for Job-Shop Scheduling,” IEEE Transactions on Systems, Man and Cybernetics, Part A, 38(2), 358-368.
    10. Gruen, D., Rauch, T., Redpath, S., and Ruettinger, S. (2002). “The Use of Stories in User Experience Design,” International Journal of Human – Computer Interaction, 14 (3&4), 203-534.
    11. MacQueen, J.B. (1967). Some Methods for classification and Analysis of Multivariate Observations, University of California Press, 281-297.
    12. Mehdizadeh, E. (2009). “A fuzzy clustering PSO algorithm for supplier base management,” International Journal of Management Science and Engineering Management Vol. 4, 311-320.
    13. Melville, P., and SindHuani, V. (2010). Recommender Systems, Encyclopedia of Machine Learning. 829-838.
    14. Mican, D. and Tomai, N. (2010). “Association-Rules-Based Recommender System for Personalization in Adaptive Web-Based Applications,” Current Trends in Web Engineering, 85-90.
    15. Nock, R. and Nielsen, F. (2006). “On Weighting Clustering,” IEEE Trans. on Pattern Analysis and Machine Intelligence, 28 (8), 1-13.
    16. Norman, D. A. (2002). The Psychology of Everyday Things, Perseus Books Group.
    17. Pakhira, Bandyopadhyay and Maulik. (2004) “Validity index for crisp and fuzzy clusters,” Pattern Recognition, Volume 37, Issue 3, 487-501.
    18. Rajaraman, A., Leskovec, J., and Ullman, J.D. (2011). Mining of Massive Datasets, Cambridge University Press.
    19. Ricci, F., Rokach, L., and Shapira, B. (2011). “Introduction to Recommender Systems Handbook,” Recommender Systems Handbook, Springer, 1-35.
    20. Schafer, J. B., Konstan, J. A., and Riedl, J. (2001). “E-commerce recommendation applications,” Data Mining and Knowledge Discovery, 5, 115-153.
    21. Tan, P. N., Steinbach, M., and Kumar, V. (2006). Introduction to Data Mining, Errata.
    22. Tax, S. S., McCutcheon, D., and Wilkinson, I. F. (2013). “The Service Delivery Network (SDN) A Customer-Centric Perspective of the Customer Journey,” Journal of Service Research vol. 16, 454-470.
    23. Wang, H. F. and Chou, P. W. (2016). “Optimal Combination of Renewable Energies for an Enterprise A Case of Taiwan,” Master Thesis, National Tsing Hua University.
    24. Wang, H. F. and Lai, C. L. (2016). “Application of Soft Computing Techniques with Fourier series to Forecast Monthly Electricity Demand,” Master Thesis, National Tsing Hua University.
    25. Wang, H. F. and Lee, Y. Y. (2014). “Two-stage Particle Swarm Optimization Algorithm for the Time Dependent Alternative Vehicle Routing Problem,” Applied & Computational Mathematics, 3(4), 1-9.
    26. Wang, H. F. and Lin, Z. H. (2016). “A Robust Optimization Approach to Solar Power Installation Capacity under Feed-in Tariff Policy: A Case in Taiwan,” Master Thesis, National Tsing Hua University.
    27. Wang, H. F., O-Yang, C.C and Tsau R.C. (2011). “Fuzzy Relation Analysis in Time Series Analysis,” International Journal of Computers and Mathematics with Application, 49, 539-548
    28. Wang, H. F. and Wu, C. T. (2012) “A Strategy-Oriented Operation Module for Recommender Systems in E-Commerce,” Computers & OR. 39(8), 1837-1849.
    29. Directorate-General of Budget, Accounting and Statistics, Taiwan. eng.dgbas.gov.tw/
    30. International Energy Agency, http://www.iea.org/
    31. The World Bank, http://www.worldbank.org/
    32. United Nations Statistics Division, http://unstats.un.org/unsd/default.htm

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE