研究生: |
陳怡礽 Chen, Yi-Reng |
---|---|
論文名稱: |
利用陽離子-π作用力和雙硫鍵誘導膠原蛋白異源三股螺旋摺疊之探討 Using cation-π interactions and disulfide bonds to induce the folding of collagen heterotrimers |
指導教授: |
洪嘉呈
Horng, Jia-Cherng |
口試委員: |
朱立岡
Chu, Li-Kang 杜玲嫻 Tu, Ling-Hsien |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 109 |
中文關鍵詞: | 膠原蛋白 、異源三股螺旋 、陽離子-π 、雙硫鍵 |
外文關鍵詞: | collagen, heterotrimers, cation-π, disulfide |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
膠原蛋白是細胞外基質的主要成分,其參與組織的再生,並且有良好的生物相容性,可應用在藥物傳遞或是生醫材料。在最近的發展中,它可作為染色病理組織的肽探針,為涉及膠原的疾病提供了方便的工具。膠原蛋白結構主要是有三股左手螺旋的PPII沿著同一軸互相纏繞成一條三股螺旋,依照組成分為AAA 型的同源三股螺旋及AAB或ABC型的異源三股螺旋。倘若膠原蛋白的二級結構摺疊錯亂可能造成疾病,因此研究膠原蛋白股與股之間的作用力是相當重要的。
我們的研究主要是以(Pro-Hyp-Gly) 9為基底,將序列中的胺基酸以Arg及Tyr及Pro取代,利用陽離子-π作用力誘導異源三聚體的摺疊。圓二色光譜儀(CD)測量證實,由陽離子殘基和芳香族殘基的側鏈形成的陽離子-π相互作用可以幫助三聚體摺疊。第一部分探討(POG)n可以看作(X–Y-Gly)n,當陽離子殘基在Y位置,芳香族殘基在X位置時,可以通過陽離子-π相互作用形成三股螺旋。反之,如果相對的陽離子-芳香族位置互換則三聚體無法形成,實驗結果證實胺基酸在序列中的位置對形成膠原三螺旋中有著至關重要的影響。第二部分探討當Hyp替換為Pro是否影響膠原蛋白整體穩定性,由CD與差示掃描量熱儀(DSC)結果得知異源三股螺旋仍然可以形成但相較於未置換前有較低的穩定性,並經由異核單量子相關實驗(HSQC)進一步確認三聚體組成。第三部分為了進一步加強膠原蛋白鏈之間的相互作用力,我們在胜肽的碳末端添加了Cys,誘導其形成雙硫鍵的二聚體。結果證實雙硫鍵連接的二聚體可以促進穩定異源三股螺旋的形成,並捕獲變性膠原蛋白胜肽。
Collagen is the main component of extracellular matrix. It participates in tissue regeneration and has high biocompatibility. It can be used in drug delivery or biomedical materials. In a recent development, it was shown to serve as a peptide probe to stain pathological tissues, providing a convenient tool for detecting collagen-involved diseases. Collagen structure is mainly composed of three left-handed helices of PPII wound into a triple helix, which is classified into AAA-type homotrimers and AAB-type or ABC-type heterotrimers according to the composition. If the folding of collagen disorder, it may cause disease.Thus, it is very important to study the force between the collagen strands.
Our research mainly uses (Pro-Hyp-Gly)9 as the parent peptide, and replaces the amino acids with Arg, Tyr, and Pro in the sequence to induce the folding of heretotrimers via cation-πinteractions. Circular dichroism measurements showed the cation-π interactions formed by the side chains of cationic residues and aromatic residues can assist the heterotrimeric folding. The results show that when the cationic residue is at the Y position and the aromatic residue is at the X position, a heterotrimer can be formed through the cation-π interactions. In contrast, if the relative cationic-aromatic positions are reversed, the trimer cannot be formed, indicating the position in sequence plays a vital role on forming a collagen triple helix. When Hyp is replaced by Pro, the heterotrimers can still form but with lower stability. To further strengthen the interaction between the collagen strands, we also added Cys into the C-terminus of the peptide to form disulfide-linked dimers as a strategy to fold heterotrimers. The results show that the disulfide-linked dimers can promote the formation of a stable heterotrimer.
1. Clements, K. A.; Acevedo-Jake, A. M.; Walker, D. R.; Hartgerink, J. D., Glycine substitutions in collagen heterotrimers alter triple helical assembly. Biomacromolecules 2017, 18, 617-624.
2. Shoulders, M. D.; Raines, R. T., Collagen structure and stability. Annu. Rev. Biochem 2009, 78, 929-958.
3. Cowan, P. M.; McGavin, S.; North, A. C. T., The polypeptide chain configuration of collagen. Nature 1955, 176, 1062-1064.
4. Rich, A.; Crick, F. H. C., The molecular structure of collagen. J. Mol. Biol. 1961, 3, 483-506.
5. Bella, J.; Eaton, M.; Brodsky, B.; Berman, H., Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution. Science 1994, 266, 75-81.
6. Cowan, P. M.; McGavin, S., Structure of poly-L-proline. Nature 1955, 176, 501-503.
7. Traub, W.; Shmueli, U., Structure of poly- L -proline I. Nature 1963, 198, 1165-1166.
8. Okuyama, K., Revisiting the molecular structure of collagen. Connect. Tissue Res. 2008, 49, 299-310.
9. Adzhubei, A. A.; Sternberg, M. J. E.; Makarov, A. A., Polyproline-II helix in proteins: Structure and Function. J. Mol. Biol. 2013, 425, 2100-2132.
10. Horng, J. C.; Raines, R. T., Stereoelectronic effects on polyproline conformation. Protein Sci. 2006, 15, 74-83.
11. Russell, L. E.; Fallas, J. A.; Hartgerink, J. D., Selective assembly of a high stability AAB collagen heterotrimer. J. Am. Chem. Soc. 2010, 132, 3242-3243.
12. Marini, J. C.; Forlino, A.; Cabral, W. A.; Barnes, A. M.; San Antonio, J. D.; Milgrom, S.; Hyland, J. C.; Körkkö, J.; Prockop, D. J.; De Paepe, A.; Coucke, P.; Symoens, S.; Glorieux, F. H.; Roughley, P. J.; Lund, A. M.; Kuurila-Svahn, K.; Hartikka, H.; Cohn, D. H.; Krakow, D.; Mottes, M.; Schwarze, U.; Chen, D.; Yang, K.; Kuslich, C.; Troendle, J.; Dalgleish, R.; Byers, P. H., Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: Regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum. Mutat. 2007, 28, 209-221.
13. Baum, J.; Brodsky, B., Folding of peptide models of collagen and misfolding in disease. Curr. Opin. Struct. Biol. 1999, 9, 122-128.
14. Beck, K.; Chan, V. C.; Shenoy, N.; Kirkpatrick, A.; Ramshaw, J. A. M.; Brodsky, B., Destabilization of osteogenesis imperfecta collagen-like model peptides correlates with the identity of the residue replacing glycine. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 4273-4278.
15. Persikov, A. V.; Ramshaw, J. A. M.; Kirkpatrick, A.; Brodsky, B., Amino acid propensities for the collagen triple-helix. Biochemistry 2000, 39, 14960-14967.
16. 黃俞強, 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為. 2014.
17. Sunner, J.; Nishizawa, K.; Kebarle, P., Ion-solvent molecule interactions in the gas phase. The potassium ion and benzene. J. Phys. Chem. 1981, 85, 1814-1820.
18. Dougherty, D. A., The cation−π interaction. Acc. Chem. Res. 2013, 46, 885-893.
19. Gallivan, J. P.; Dougherty, D. A., Cation-π interactions in structural biology. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 9459.
20. Reddy, A. S.; Sastry, G. N., Cation [M = H+, Li+, Na+, K+, Ca2+, Mg2+, NH4+, and NMe4+] interactions with the aromatic motifs of naturally occurring amino acids: A theoretical study. J. Phys. Chem. A 2005, 109, 8893-903.
21. Reddy, A. S.; Zipse, H.; Sastry, G. N., Cation−π interactions of bare and coordinatively saturated metal ions: Contrasting structural and energetic characteristics. J. Phys. Chem. B 2007, 111, 11546-11553.
22. Rao, J. S.; Zipse, H.; Sastry, G. N., Explicit solvent effect on cation−π interactions: A first principle investigation. J. Phys. Chem. B 2009, 113, 7225-7236.
23. Mahadevi, A. S.; Sastry, G. N., Cation−π interaction: Its role and relevance in chemistry, biology, and material science. Chem. Rev. 2013, 113, 2100-2138.
24. Mecozzi, S.; West, A. P.; Dougherty, D. A., Cation−π interactions in simple aromatics: Electrostatics provide a predictive tool. J. Am. Chem. Soc. 1996, 118, 2307-2308.
25. Mecozzi, S.; West, A. P.; Dougherty, D. A., Cation-pi interactions in aromatics of biological and medicinal interest: Electrostatic potential surfaces as a useful qualitative guide. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 10566.
26. Wheeler, S. E.; Houk, K. N., Substituent effects in cation/π interactions and electrostatic potentials above the centers of substituted benzenes are due primarily to through-space effects of the substituents. J. Am. Chem. Soc. 2009, 131, 3126-3127.
27. Deakynet, C. A.; Meot-Ner, M., Unconventional ionic hydrogen bonds. NH...complexes of onium ions with olefins and benzene derivatives. J. Am. Chem. Soc 1985, 107, 474-479.
28. Rodham, D. A.; Suzuki, S.; Suenram, R. D.; Lovas, F. J.; Dasgupta, S.; Goddard, W. A.; Blake, G. A., Hydrogen bonding in the benzene–ammonia dimer. Nature 1993, 362, 735-737.
29. Ma, J. C.; Dougherty, D. A., The cation−π interaction. Chem. Rev. 1997, 97, 1303-1324.
30. Flocco, M. M.; Mowbray, S. L., Planar stacking interactions of arginine and aromatic side-chains in proteins. J. Mol. Biol. 1994, 235, 709-717.
31. Chiang, C.-H.; Horng, J.-C., Cation-π interaction induced folding of AAB-type collagen heterotrimers. J. Phys. Chem. B 2016, 120, 1205-1211.
32. Dougherty, D. A., Cation-pi interactions in chemistry and biology: A new view of benzene, Phe, Tyr, and Trp. Science 1996, 271, 163-168.
33. Meijer, E. J.; Sprik, M., A density‐functional study of the intermolecular interactions of benzene. J. Chem. Phys. 1996, 105, 8684-8689.
34. Wintjens, R.; Liévin, J.; Rooman, M.; Buisine, E., Contribution of cation-π interactions to the stability of protein-DNA complexes. J. Mol. Biol. 2000, 302, 393-408.
35. Quig, D., Cysteine metabolism and metal toxicity. Alternative Medicine Review 1998, 3, 262-270.
36. Creighton, T. E., Disulfide bond formation in proteins. Methods Enzymol. 1984, 107, 305-329.
37. Frand, A. R.; Kaiser, C. A., Ero1p oxidizes protein disulfide isomerase in a pathway for disulfide bond formation in the endoplasmic reticulum. Mol. Cell 1999, 4, 469-477.
38. Cuozzo, J. W.; Kaiser, C. A., Competition between glutathione and protein thiols for disulphide-bond formation. Nat. Cell Biol. 1999, 1, 130-135.
39. Bannister, S. J.; Wittrup, K. D., Glutathione excretion in response to heterologous protein secretion in saccharomyces cerevisiae. Biotechnol. Bioeng. 2000, 68, 389-395.
40. Woycechowsky, K. J.; Raines, R. T., Native disulfide bond formation in proteins. Curr. Opin. Chem. Biol. 2000, 4, 533-539.
41. Cleland, W. W., Dithiothreitol, a new protective reagent for SH groups. Biochemistry 1964, 3, 480-482.
42. Burns, J. A.; Butler, J. C.; Moran, J.; Whitesides, G. M., Selective reduction of disulfides by tris (2-carboxyethyl) phosphine. J. Org. Chem. 1991, 56, 2648-2650.
43. Tanrikulu, I. C.; Raines, R. T., Optimal interstrand bridges for collagen-like biomaterials. J. Am. Chem. Soc. 2014, 136, 13490-13493.
44. Gale, M.; Pollanen, M. S.; Markiewicz, P.; Goh, M. C., Sequential assembly of collagen revealed by atomic force microscopy. Biophys. J. 1995, 68, 2124-2128.
45. Zheng, H.; Lu, C.; Lan, J.; Fan, S.; Nanda, V.; Xu, F., How electrostatic networks modulate specificity and stability of collagen. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 6207.
46. Chen, C.-C.; Hsu, W.; Hwang, K.-C.; Hwu, J. R.; Lin, C.-C.; Horng, J.-C., Contributions of cation–π interactions to the collagen triple helix stability. Arch. Biochem. Biophys. 2011, 508, 46-53.
47. Chiang, C.-H.; Fu, Y.-H.; Horng, J.-C., Formation of AAB-type collagen heterotrimers from designed cationic and aromatic collagen-mimetic peptides: Evaluation of the C-terminal cation-π interactions. Biomacromolecules 2017, 18, 985-993.
48. Li, Y.-S., Preparation of the collagen-mimetic peptide-borane conjugate and the effects of disulfides and cation-π interactions on the folding of collagen heterotrimers. 2017.
49. Yao, T.-J., Study of cation-π interactions and cross linking on the self-assembly of collagen-mimetic peptides and the orientation dependent of cation-π interactions on the stability of collagen triple helix. 2019.
50. Lin, Y.-C., Study of cation-π interactions to stabilize collagen and induce the folding of heterotrimers. 2020.
51. Merrifield, R. B., Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 1963, 85, 2149-2154.
52. Merrifield, B., Solid phase synthesis. Science 1986, 232, 341.
53. http://www.isa.au.dk/facilities/astrid2/beamlines/au-cd/AU-CD_3.asp. (accessed on 2021/07/01).
54. https://qph.fs.quoracdn.net/main-qimg-fb7b158c1233436be39ab8f04a564cd6 (accessed on 2021/07/01).
55. https://www.codixx.de/en/knowledge-corner/polarization (accessed on 2021/07/01).
56. https://www.researchgate.net/figure/Front-view-of-circularly-polarized-light-Left-and-elliptically-polarized-light-Right_fig7_311373097 (accessed on 2021/07/01).
57. Fasman, G. D., Circular dichroism and the conformational analysis of biomolecules. 2013.
58. Greenfield, N. J.; Fasman, G. D., Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 1969, 8, 4108-4116.
59. Adler, A. J.; Greenfield, N. J.; Fasman, G. D., Circular dichroism and optical rotatory dispersion of proteins and polypeptides. Methods Enzymol. 1973, 27, 675-735.
60. Greenfield, N. J., Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 2006, 1, 2876.
61. Bodenhausen, G.; Ruben, D. J., Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chem. Phys. Lett. 1980, 69, 185-189.
62.https://en.wikipedia.org/wiki/Heteronuclear_single_quantum_coherence_spectroscopy (accessed on 2021/07/01).
63. Chiu, M. H.; Prenner, E. J., Differential scanning calorimetry: An invaluable tool for a detailed thermodynamic characterization of macromolecules and their interactions. J. Pharm. Bioallied Sci. 2011, 3, 39-59.
64. https://www.creative-proteomics.com/pronalyse/images/Differential-Scanning-Calorimetry-Fig1.png (accessed on 2021/07/01).
65. Brodsky, B.; Ramshaw, J. A. M., The collagen triple-helix structure. Matrix Biol. 1997, 15, 545-554.
66. Meot-Ner, M.; Deakyne, C. A., Unconventional ionic hydrogen bonds. NH+.....pi.. complexes of onium ions with olefins and benzene derivatives. J. Am. Chem. Soc. 1985, 107, 474-479.
67. Dölz, R.; Engel, J.; Kühn, K., Folding of collagen IV. Eur. J. Biochem. 1988, 178, 357-66.