研究生: |
彭陳鍠 Chen-Huang Peng |
---|---|
論文名稱: |
銅/TaSix/SiOC鑲嵌結構製程整合 Process Integration of Cu/TaSix/SiOC Damascene Structure |
指導教授: |
葉鳳生
Fon-Shan Huang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 54 |
中文關鍵詞: | 擴散阻障層 、低介電係數介質 、化學機械研磨 、奈米晶粒 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文之目的在於研究銅、擴散阻障層TaSix與低介電係數介質SiOC 之製程整合,並配合化學機械研磨製程完成銅/TaSix/SiOC damascene結構,探討其導線與導線之間漏電流傳導機制。
在低介電係數介質方面,以高密度電漿化學氣相沉積系統沉積SiOC薄膜,其介電係數經高頻電容-電壓曲線量測為2.77,並以傅立葉轉換紅外線光譜儀確認其薄膜之化學鍵結;另外也量測SiOC薄膜在300℃熱循環過程中之應力變化及熱循環後之薄膜殘餘應力大小。
擴散阻障層方面,以濺鍍方式沉積之TaSix薄膜,經由不同溫度下之薄膜導線電流-電壓曲線量測,從電阻率與溫度的關係圖中得到了電阻率隨溫度升高而下降的奈米顆粒特性;由歐傑電子顯微鏡之縱深分佈圖得知其原子組成比例約為Si/Ta=0.5。
將低介電係數介質SiOC、擴散阻障層TaSix、有電極電鍍銅配合化學機械研磨製程完成銅/TaSix/SiOC damascene平行導線結構,並在不同溫度下量測其導線與導線間之漏電流,由漏電流(lnJ)對電場(E1/2)的關係圖分析討論其漏電流傳導機制,從ln(J/T2) v.s. (1/T)之作圖得知銅/TaSix/SiOC damascene結構之漏電流傳導機制主要為Schottky emission並進一步由其fitting直線之斜率對E1/2作圖推算出擴散阻障層TaSix之能障高(barrier height)約為0.35 eV~0.38 eV。
The integration of copper, diffusion barrier nano-cluster TaSix and low-k dielectric SiOC were investigated. We fabricated diffusion barrier layer, nano-cluster TaSix, low-k dielectric SiOC, develop the processes integration for Cu metallization and investigated the conduction mechanism of line-to-line leakage current for damascene structure.
The dielectric constant of HDPCVD SiOC film obtained by high frequency C-V measurement was 2.77. Fourier transform infrared (FTIR) spectroscopy was performed in order to analyze the chemical structures of SiOC films. The residual stress and stress hysteresis of SiOC were measured during the thermal cycle of a temperature 300℃.
The I-V characteristics of nano-cluster TaSix film were performed at various temperatures(30℃~200℃). The resistivity of the film is decreasing as the temperature rises. Auger electron spectroscopy characterizes the chemical compositions of the thin barrier film.
The Cu damascene structures with diffusion barrier TaSix and low-k dielectric SiOC were fabricated. From leakage current measurements, the dominant conduction mechanism of the Cu/TaSix/SiOC damascene structure is Schottky emission. And the straight lines were fitted to the data points of Ln(J/T2) v.s. (1/T) plots. It also gave the information of the barrier height. The barrier height of TaSix/SiOC is about 0.35eV ~ 0.38eV.
[1]Peter Singer, Semiconductor International, p.91. June 1998
[2]K. Maex, M. R. Baklanov, D. Shamiryan, F. Iacopi, S. H. Brongersma, and Z. S. Yanovitskaya, “Low dielectric constant materials for microelectronics”, Journal of Applied Physics, vol. 93(11), p.8793-8841, 2003
[3]冉景涵, “ULSI中銅種子層及有電極電鍍的製程整合”, 國立清華大學碩士論文, 1999
[4]C. Lin, L. Clevenger, F. Schnabel, F. F. Jamin, and D. Dobuzinski, “Planarization of dual-damascene post-metal-CMP structures”, IITC, p.99-86, 1999
[5]C. Y. Chang, S. M. Sze, “ULSI Technology”, McGraw-Hill, Chap. 8, 1996
[6]J. M. Steigerwald, S. P. Murarka, and R. J. Gutmann, “Chemical Mechanical Planization of Microelectronic materials”, John Wiley & Sons, Chap. 1, 1997
[7]G. S. Chen, P. Y. Lee and S. T. Chen, “Phase formation behavior and diffusion barrier property of reactively sputtered tantalum-based thin films used in semiconductor metallization”, Thin Solid Films, vol.353, p.264-273, 1999
[8]B. S. Kang, S. M. Lee, J. S. Kwak, D. S Yoon, and H. K. Baik, “The effectiveness of Ta prepared by Ion-Assisted Deposition as a diffusion barrier between copper and silicon”, Journal of the Electrochemical Society, vol. 144(5), p.1807-1812, 1997
[9]陳忠賢, “銅/鉭基擴散障礙層與低介電係數材料之製程整合”, 國立清華大學博士論文, 2003
[10]W. D. Gray, M. J. Loboda, J. N. Bremmer, H. Struyf, M. Lepage, M. V. Hove, R. A. Donaton, E. Sleeckx, M. Stucchi, F. Lanckmans, T. Gao, W. Boullart, B. Conegrachts, M. Maenhoudt, S. Yanhaelemeersch, H. Meynen and K. Maex, “Process optimization and integration of trimethylsilane-deposited a-SiC:H and a-SiCO:H dielectric thin films for Damascene processing”, Journal of the Electrochemical Society, vol. 150(7), p.G404-G411, 2003
[11]K. C. Tsai, J. M. Shieh, and B. T. Dai, “Inductively coupled plasma deposited silicon oxycarbide interlayers”, Electrochemical and Solid-State Letters, 6(10), p.F31-F33, 2003
[12]S. U. Kim, T. Cho, and P. S. Ho, “Leakage current degradation and carrier conduction mechanisms for Cu/BCB Damascene process under bias-temperature stress”, 37th Annual International Reliability Physics Symposium, p. 277-282, 1999
[13]Z. C. Wu, C. C. Chiang, W. H. Wu, M. C. Chen, S. M. Jeng, L. J. Li, S. M. Jang, C. H. Yu, and M. S. Liang, “Leakage current mechanisms for damascene process of Cu/methylsilane-doped low-k chemical vapor deposited oxides”, Proceedings of the IEEE 2001 International Interconnect Technology Conference, p.42-44, 2001
[14]K. Y. Yiang, W. J. Yoo, Q. Guo, and A. Krishnamoorthy, “Investigation of electrical conduction in carbon-doped silicon oxide using a voltage ramp method”, Applied Physics Letters, vol. 83(3), p.524-526, 2003
[15]S. M. Sze, “Physics of Semiconductor Devices”, 2nd edition, Wiley, 1981
[16]C. Hamann, H. Burghardt, and T. Frauenheim, “Electrical Conduction Mechanisms in Solids”, Deutscher Verlag der Wissenschaften, 1988
[17]International Technology Roadmap for Semiconductors, Interconnect, 2003
[18]張立德, 牟季美, “奈米材料和奈米結構”, 初版, 滄海書局 ,2002
[19]薛增泉, 李浩, “薄膜物理”, 電子工業出版社
[20]P. Sheng, “Fluctuation-induced tunneling conduction in disordered materials”, Physical Review B, vol. 21(6), p.2180-2195 1980
[21]J. G. Simmons, “Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film”, Journal of Applied Physics, vol. 34(6), p.1793-1803 1963