簡易檢索 / 詳目顯示

研究生: 蘇瑞揚
Su, Ruei-Yang
論文名稱: 基於神經生成網路的單層對抗式影像生成
On the Generator Network for Single-Level Adversarial Data Synthesis
指導教授: 吳尚鴻
Wu, Shan-Hung
口試委員: 李哲榮
Lee, Che-Rung
林彥宇
Lin, Yen-Yu
劉奕汶
Liu, Yi-Wen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 36
中文關鍵詞: 神經正切核對抗式影像生成
外文關鍵詞: NeuralTangentKernel, AdversarialImageGeneration
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生成對抗網路 (GAN) 在數據合成方面取得了令人矚目的性能,並推動 了許多應用程序的發展。然而,GAN 因其雙層優化目標而難以訓練,這會 導致收斂、模式崩潰和梯度消失等問題。在本文中,我們提出了一種新的 生成模型,稱為生成對抗 NTK (GA-NTK),它具有單層目標。 GA-NTK 保留 了對抗性學習的精神(這有助於生成合理的數據),同時避免了 GAN 的訓
    練困難。這是通過將鑑別器建模為具有神經正切核 (NTK-GP) 的高斯過程 來完成的,其訓練動態可以完全用封閉形式的公式來描述。我們分析了通 過梯度下降訓練的 GA-NTK 的收斂行為,並給出了一些收斂的充分條件。 我們還進行了廣泛的實驗來研究 GA-NTK 的優點和局限性,並提出了一些 使 GA-NTK 更實用的技術。


    N/A

    第一章 前言...............................................................1 第二章 相關研究...........................................................2 第一節GAN和改進...................................................................2 第二節 高斯過程和神經正切核.......................................................3 第三章 GA-NTK.............................................................3 第一節 優點.......................................................................4 第二節 GA-NTK 在實務上............................................................4 第四章 實驗...............................................................5 第一節 圖像品質...................................................................6 第二節 訓練穩定度.................................................................9 第三節 可擴展性...................................................................10 第五章 結論...............................................................10 第六章 GA-NTK的統計解釋GA-NTK.............................................11 第七章 定理 3.1 的證明 ...................................................11 第一節背景和符號..................................................................11 第二節 收斂性.....................................................................12 第三節 證明.......................................................................13 第八章 實驗設定...........................................................14 第一節模型設定....................................................................14 第二節 評估.......................................................................18 第三節超參數調整..................................................................18 第九章 更多實驗...........................................................20 第一節 GA-FNTK vs. GA-CNTK........................................................20 第二節 分批GA-NTK.................................................................20 第三節 對超參數的敏感性...........................................................20 第四節 訓練過程中圖像的演變.......................................................22 第十章 更多由 GA-CNTK 和 GA-CNTKg 生成的圖像..............................22 第十一章 降級圖片.........................................................27 第十二章 GA-CNTKg 學習的語義.............................................30 第十三章 收斂速度與訓練時間...............................................30 參考......................................................................32

    Sina Alemohammad, Zichao Wang, Randall Balestriero, and Richard G.
    Baraniuk. The recurrent neural tangent kernel. In Proc. of ICLR,
    2021.
    Cem Anil, James Lucas, and Roger Grosse. Sorting out lipschitz function
    approximation. In Proc. of ICML, 2019.
    Martin Arjovsky and Léon Bottou. Towards principled methods for training generative adversarial networks. In Proc. of ICLR, 2017.
    Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In Proc. of ICML, 2017.
    Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov,
    and Ruosong Wang. On exact computation with an infinitely wide neural
    net. In Proc. of NeurIPS, 2019.
    Sanjeev Arora, Simon S. Du, Zhiyuan Li, Ruslan Salakhutdinov, Ruosong
    Wang, and Dingli Yu. Harnessing the power of infinitely wide deep
    nets on small-data tasks. In Proc. of ICLR, 2020.
    Paul Bergmann, Sindy Löwe, Michael Fauser, David Sattlegger, and
    Carsten Steger. Improving unsupervised defect segmentation by applying structural similarity to autoencoders. In VISIGRAPP, 2019.
    Alberto Bietti and Julien Mairal. On the inductive bias of neural
    tangent kernels. In Proc. of NeurIPS, 2019.
    Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training
    for high fidelity natural image synthesis. arXiv preprint arXiv:
    1809.11096, 2018.
    Tong Che, Yanran Li, Athul Paul Jacob, Yoshua Bengio, and Wenjie Li.
    Mode regularized generative adversarial networks. In Proc. of ICLR,
    2017.
    Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever,
    and Pieter Abbeel. Infogan: Interpretable representation learning
    by information maximizing generative adversarial nets. In Proc. of
    NeurIPS, 2016.
    Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in
    differentiable programming. In Proc. of NeurIPS, 2019.
    Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis, and Haoyang
    Zeng. Training gans with optimism. In Proc. of ICLR, 2018.
    Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
    Imagenet: A large-scale hierarchical image database. In Proc. of
    CVPR, 2009.
    Ishan P. Durugkar, Ian Gemp, and Sridhar Mahadevan. Generative multiadversarial networks. In Proc. of ICLR, 2017.
    32
    Farzan Farnia and Asuman E. Ozdaglar. Do gans always have nash equilibria? In Proc. of ICML, 2020.
    Jean-Yves Franceschi, Emmanuel de Bézenac, Ibrahim Ayed, Mickaël Chen,
    Sylvain Lamprier, and Patrick Gallinari. A neural tangent kernel
    perspective of gans. CoRR, abs/2106.05566, 2021.
    Adrià Garriga-Alonso, Carl Edward Rasmussen, and Laurence Aitchison.
    Deep convolutional networks as shallow gaussian processes. In Proc.
    of ICLR, 2019.
    Amnon Geifman, Abhay Yadav, Yoni Kasten, Meirav Galun, David Jacobs,
    and Basri Ronen. On the similarity between the laplace and neural
    tangent kernels. In Proc. of NeurIPS, 2020.
    Arnab Ghosh, Viveka Kulharia, Vinay P. Namboodiri, Philip H. S. Torr,
    and Puneet Kumar Dokania. Multi-agent diverse generative adversarial
    networks. In Proc. of CVPR, 2018.
    Ian Goodfellow. Nips 2016 tutorial: Generative adversarial networks.
    arXiv preprint arXiv:1701.00160, 2016.
    Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David WardeFarley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative
    adversarial nets. In Proc. of NeurIPS, 2014.
    Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
    and harnessing adversarial examples. In Proc. of ICLR, 2015.
    Robert M Gower. Convergence theorems for gradient descent, May 2022.
    https://gowerrobert.github.io/pdf/M2_statistique_optimisation/grad_
    conv.pdf.
    Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard
    Schölkopf, and Alexander J. Smola. A kernel two-sample test. J.
    Mach. Learn. Res., 2012.
    Ishaan Gulrajani, Faruk Ahmed, Martín Arjovsky, Vincent Dumoulin, and
    Aaron C. Courville. Improved training of wasserstein gans. In Proc.
    of NeurIPS, 2017.
    Insu Han, Haim Avron, Neta Shoham, Chaewon Kim, and Jinwoo Shin. Random
    features for the neural tangent kernel. CoRR, abs/2104.01351, 2021.
    Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler,
    and Sepp Hochreiter. Gans trained by a two time-scale update rule
    converge to a local nash equilibrium. In Proc. of NeurIPS, 2017.
    Jiri Hron, Yasaman Bahri, Jascha Sohl-Dickstein, and Roman Novak.
    Infinite attention: NNGP and NTK for deep attention networks. In
    Proc. of ICML, 2020.
    Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom,
    Brandon Tran, and Aleksander Madry. Adversarial examples are not
    bugs, they are features. In Proc. of NeurIPS, 2019.
    33
    Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent
    kernel: Convergence and generalization in neural networks. In Proc.
    of NeurIPS, 2018.
    Harold Jeffreys. An invariant form for the prior probability in estimation problems. Proc. of the Royal Society of London. Series A.
    Mathematical and Physical Sciences, 186(1007):453–461, 1946.
    Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing and improving the image quality of
    stylegan. In Proc. of CVPR, 2020.
    Alex Krizhevsky. Learning multiple layers of features from tiny images.
    Technical report, 2009.
    Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit
    database. ATT Labs [Online]. Available: http://yann.lecun.com/exdb/
    mnist, 2, 2010.
    Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew
    Cunningham, Alejandro Acosta, Andrew P. Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, and Wenzhe Shi. Photo-realistic single image
    super-resolution using a generative adversarial network. In Proc. of
    CVPR, 2017.
    Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington, and Jascha Sohl-Dickstein. Deep neural networks as
    gaussian processes. In Proc. of ICLR, 2018.
    Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman
    Novak, Jascha Sohl-Dickstein, and Jeffrey Pennington. Wide neural
    networks of any depth evolve as linear models under gradient descent.
    In Proc. of NeurIPS, 2019.
    Jaehoon Lee, Samuel S. Schoenholz, Jeffrey Pennington, Ben Adlam,
    Lechao Xiao, Roman Novak, and Jascha Sohl-Dickstein. Finite versus
    infinite neural networks: an empirical study. In Proc. of NeurIPS,
    2020.
    Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabás
    Póczos. MMD GAN: towards deeper understanding of moment matching
    network. In Proc. of NeurIPS, 2017.
    Yujia Li, Kevin Swersky, and Richard S. Zemel. Generative moment
    matching networks. In Proc. of ICML, 2015.
    Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning
    face attributes in the wild. In Proc. of ICCV, December 2015.
    Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier
    Bousquet. Are gans created equal? A large-scale study. In Proc. of
    NeurIPS, 2018.
    34
    Qi Mao, Hsin-Ying Lee, Hung-Yu Tseng, Siwei Ma, and Ming-Hsuan Yang.
    Mode seeking generative adversarial networks for diverse image synthesis. In Proc. of CVPR, 2019.
    Xudong Mao, Qing Li, Haoran Xie, Raymond Y. K. Lau, Zhen Wang, and
    Stephen Paul Smolley. Least squares generative adversarial networks.
    In Proc. of ICCV, 2017.
    Alexander G de G Matthews, Jiri Hron, Mark Rowland, Richard E Turner,
    and Zoubin Ghahramani. Gaussian process behaviour in wide deep neural
    networks. In Proc. of ICLR, 2018.
    Lars M. Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training methods for gans do actually converge? In Proc. of ICML, 2018.
    Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled
    generative adversarial networks. In Proc. of ICLR, 2017.
    Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida.
    Spectral normalization for generative adversarial networks. In Proc.
    of ICLR, 2018.
    Aryan Mokhtari, Asuman E. Ozdaglar, and Sarath Pattathil. A unified
    analysis of extra-gradient and optimistic gradient methods for saddle
    point problems: Proximal point approach. In Proc. of AISTATS, 2020.
    Vaishnavh Nagarajan and J. Zico Kolter. Gradient descent GAN optimization is locally stable. In Proc. of NeurIPS, 2017.
    Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A Alemi,
    Jascha Sohl-Dickstein, and Samuel S Schoenholz. Neural tangents:
    Fast and easy infinite neural networks in python. In Proc. of ICLR,
    2019a.
    Roman Novak, Lechao Xiao, Jaehoon Lee, Yasaman Bahri, Greg Yang,
    Jiri Hron, Daniel A. Abolafia, Jeffrey Pennington, and Jascha SohlDickstein. Bayesian deep convolutional networks with many channels
    are gaussian processes. In Proc. of ICLR, 2019b.
    Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein,
    and Surya Ganguli. Exponential expressivity in deep neural networks
    through transient chaos. In Proc. of NeurIPS, 2016.
    Guo-Jun Qi. Loss-sensitive generative adversarial networks on lipschitz
    densities. Int. J. Comput. Vis., 2020.
    Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolutional generative adversarial
    networks. In Proc. of ICLR, 2016.
    Maithra Raghu, Ben Poole, Jon M. Kleinberg, Surya Ganguli, and Jascha
    Sohl-Dickstein. On the expressive power of deep neural networks. In
    Proc. of ICML, 2017.
    35
    Alfréd Rényi et al. On measures of entropy and information. In Proc.
    of the 4th Berkeley symposium on mathematical statistics and probability, volume 1, 1961.
    Mehdi S. M. Sajjadi, Giambattista Parascandolo, Arash Mehrjou, and
    Bernhard Schölkopf. Tempered adversarial networks. In Proc. of ICML,
    2018.
    Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec
    Radford, and Xi Chen. Improved techniques for training gans. In
    Proc. of NeurIPS, 2016.
    Samuel S. Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha SohlDickstein. Deep information propagation. In Proc. of ICLR, 2017.
    Vaishaal Shankar, Alex Fang, Wenshuo Guo, Sara Fridovich-Keil, Jonathan
    Ragan-Kelley, Ludwig Schmidt, and Benjamin Recht. Neural kernels
    without tangents. In Proc. of ICML, 2020.
    Kiran Koshy Thekumparampil, Prateek Jain, Praneeth Netrapalli, and
    Sewoong Oh. Efficient algorithms for smooth minimax optimization.
    In Proc. of NeurIPS, 2019.
    Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Generating
    videos with scene dynamics. In Proc. of NeurIPS, 2016.
    Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and
    Bryan Catanzaro. High-resolution image synthesis and semantic manipulation with conditional gans. In Proceedings of the IEEE conference
    on computer vision and pattern recognition, pp. 8798–8807, 2018.
    Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image
    quality assessment: from error visibility to structural similarity.
    IEEE transactions on image processing, 2004.
    Li Xu, Jimmy S. J. Ren, Ce Liu, and Jiaya Jia. Deep convolutional
    neural network for image deconvolution. In Proc. of NeurIPS, 2014.
    Greg Yang. Scaling limits of wide neural networks with weight sharing:
    Gaussian process behavior, gradient independence, and neural tangent
    kernel derivation. CoRR, abs/1902.04760, 2019a.
    Greg Yang. Tensor programs I: wide feedforward or recurrent neural
    networks of any architecture are gaussian processes. CoRR, abs/
    1910.12478, 2019b.
    Amir Zandieh, Insu Han, Haim Avron, Neta Shoham, Chaewon Kim, and
    Jinwoo Shin. Scaling neural tangent kernels via sketching and random
    features. In Proc. of NeurIPS, 2021.

    QR CODE