簡易檢索 / 詳目顯示

研究生: 蘇迪庫馬
KUMAR, SUDHIR
論文名稱: Fabrication Study of Highly-Efficient Deep-Blue Organic Light Emitting Diodes
指導教授: 周卓煇
Jou, Jwo-Huei
口試委員: 蔡永誠
Tsai,Yung-Cheng
薛景中
Shyue,Jing-Jong
陳建添
Chen,Chien-Tien
岑尚仁
Chen,Sun-Zen
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 178
中文關鍵詞: 有機發光二極體高效率深藍光寬波段氰氟乙炔溶劑化顯色高量子效率主客體能量轉移熱穩定性
外文關鍵詞: Organic light emitting diode, high efficiency, ultra-deep blue, wide color gamut, cyanofluorene acetylene, sovatochromatism, high quantum yield, host to guest energy transfer, thermal stability
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Deep blue emission is crucial for achieving high-quality displays and lightings, while high-efficiency is required to enable the corresponding products energy-saving. Wet- and dry-process feasible efficient deep-blue emitter is highly desired to realize, respectively, low cost roll-to-roll fabrication of large area and high performance devices with precise deposition of organic layers. In this study, we demonstrate high efficiency ultra-deep blue and deep-blue organic light-emitting diodes (OLEDs) using cyanofluorene acetylene conjugate based emitters. Their results and discussion will be shown in two parts.
    In the first part, we present high-efficiency and ultra-deep blue OLEDs using a cyanofluorene-acetylene conjugate based emitter, 7,7' ((9,9-dibutyl-
    9H-fluorene-2,7-diyl)bis(ethyne-2,1-diyl))bis(9,9-dipropyl-9H-fluorene-2 carbo-nitrile) (C3FLA-2). By spin coating, the C3FLA-2 shows maximum external quantum efficiency (EQE) of 6.1%, and at 100 cd m-2 for example,
    its color coordinates are (0.156, 0.055) with an EQE of 5.8%, the highest among all reported wet-processed deep-blue devices of fluorescent, phosphorescent, and thermally activated delayed fluorescent types. By vapor
    deposition, the device shows maximum EQE of 8.0%, and at 100 cd m-2 color coordinates of (0.156, 0.048) with EQE of 6.5%, the highest among all the dry-processed counterparts. The record high efficiency may be attributed to the emitter having high quantum yield of 86%, low doping concentration
    preventing concentration quenching, and a suitable host facilitating an effective host-to-guest energy transfer.
    In the second part, we also demonstrate a high efficiency deep-blue OLED using wet-process feasible donor-acceptor-type cyanofluorene acetylene conjugate based emitter, 7-(2-(9,9-dipropyl-9H-fluoren-2-yl)ethynyl)-9,9-dipropyl -9H-fluorene-2-carbonitrile (CFLA-DPA). In the
    doped solution-processed OLED device with 4,4’-bis(9H-carbazol-9-yl)biphenyl (CBP) host, the CFLA-DPA shows a maximum efficacy of 5.6 lm W-1, a maximum current efficiency of 5.4 cd A-1, a maximum EQE of 4.4%, and a peak luminance of 4150 cd m-2 with color coordinates of (0.15, 0.11). The resultant power efficiency is highest among all formerly reported solution-processed deep-blue OLED devices. The high efficacy may be attributed to the emitter having bipolar characteristic which may help to
    transport the injected carriers and a suitable host facilitating an effective host-to-guest energy transfer.


    Abstract ...............................................i Acknowledgements .................................... iii Dedication ............................................vi Table of contents ....................................vii List of Tables ........................................xi List of Figures .....................................xiii 1. Introduction ........................................1 1.1. Historical background and development of OLEDs ....1 1.2. OLED-the ultimate display technology.............. 4 1.3. OLED-the ultimate lighting technology ............ 8 1.4. World revenues of display and lighting............ 9 1.5. Basic physics of OLED ............................10 1.5.1. OLED device operation ..........................10 1.5.2. Energy transfer mechanisms .....................17 1.5.3. Host-to-guest energy transfer ..................21 1.6. Current challenges for OLED ......................23 1.6.1. Efficiency.............................................23 1.6.2. Light out-coupling limit .......................25 1.6.3. Emission purity ................................26 1.6.4. Lifetime .......................................27 1.6.5. Cost ...........................................27 2. Literature review ..................................29 2.1. The crucial roles of blue emitters ...............29 2.1.2. To enable a white light ........................30 2.1.4. To enable a high color rendering index .........32 2.2. Blue emitters and their performance ..............33 2.2.1. Blue OLEDs using fluorescent (Ist generation) emitters ..............................................34 2.2.2. Blue OLEDs using phosphorescent (IInd generation) emitters ..............................................37 2.2.3. Blue OLEDs with TADF (IIIrd generation) emitters .......................................................46 2.3. Fluorescent blue emitters based on PAH structures .......................................................48 2.3.1. Fluorene molecule based emitters ...............50 3. Experimental....................................... 65 3.1. Materials ........................................65 3.2. Synthesis of novel deep-blue emitters ............67 3.2.1. 9,9-Dipropyl-9H-fluorene-2-carbonitrile ........68 3.2.2. 7-Bromo-9,9-dipropyl-9H-fluorene-2-carbonitrile.68 3.2.3. C3FLA-2 ........................................69 3.2.4. C2FLA-1 ........................................70 3.2.5. CFLA-DPA .......................................71 3.3. Photophysical characteristic measurements ........72 3.4. Electrochemical characteristic measurements ......72 3.5. Thermal properties measurements ..................73 3.6. Film morphology analysis .........................73 3.7. DFT calculations .................................73 3.8. Device fabrication ...............................74 3.8.1. Design of electrodes ...........................74 3.8.2. Substrate cleaning .............................75 3.8.3. Deposition of organic layers ...................75 3.8.4. Deposition of inorganic layers .................78 3.8.5. Encapsulation of dry-process devices ...........78 3.9. Device performance measurement ...................79 3.9.1. Power efficiency (lm W-1) ......................79 3.9.2. Current efficiency (cd A-1) ....................80 3.9.3. External quantum efficiency (%) ................81 3.9.4. CIE color coordinates ..........................82 4. Result and discussion ..............................84 4.1. Highly efficient ultra-deep blue OLEDs ...........84 4.1.1. Wet-processed devices ..........................84 4.1.2. Dry-processed devices ..........................85 4.1.3. Thermal properties .............................85 4.1.4. Photophysical properties .......................88 4.1.5. Electrochemical properties .....................92 4.1.6. DFT-calculations ...............................92 4.1.7. Wet-processed deep-blue OLED devices ...........95 4.1.8. Dry-processed deep-blue OLED devices ..........110 4.1.9. Operational lifetime of deep-blue OLED devices.115 4.2. High efficiency bright blue OLEDs ...............117 4.2.1. Photophysical properties ......................117 4.2.2. Electrochemical properties ....................120 4.2.3. Thermal properties ............................121 4.2.4. EL characteristics of wet-processed blue OLED devices ..............................................122 References ...........................................136 Appendices ...........................................164 Appendix-A: Phosphorescent emitters ..................164 Appendix-B: Host for phosphorescent blue OLEDs .......167 List of publications and conferences .................169 Supporting informations...............................175

    1. A. Bernanose, M. Comte, P. Vouaux, J. Chim. Phys. 1953, 50, 64.
    2. A. Bernanose, P. Vouaux, J. Chim. Phys. 1953, 50, 261.
    3. A. Bernanose, J. Chim. Phys. 1955, 52, 396.
    4. A. Bernanose, P. Vouaux, J. Chim. Phys. 1955, 52, 509.
    5. H. Kallmann, M. Pope, J. Chim. Phys. 1960, 32, 300.
    6. H. Kallmann, M. Pope, Nature, 1960, 186, 4718.
    7. P. Mark, W. Helfrich, J. Appl. Phys. 1962, 33, 205.
    8. M. Pope, H. P. Kallmann, P. Magnante, J. Chem. Phys., 1963, 38,
    2042.
    9. W. Helfrich and W. Schneider, Phys. Rev. Lett., 1965, 14, 229.
    10. C. W. Tang, S. A. Vanslyke, Appl. Phys. Lett., 1987, 51, 913.
    11. J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R.
    Friend, P. Burns, A. Holmes, Nature, 1990, 347, 539.
    12. J. Kido, K. Hongawa, K. Okuyama and K. Nagai, Appl. Phys. Lett.,
    1994, 64, 815.
    13. J. Kido, M. Kimura, and K. Nagai, Science, 1995, 267, 1332.
    14. D. Y. Kondakov, J. Appl. Phys., 2007, 102, 114504.
    15. A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki,
    C. Adachi, Appl. Phys. Lett., 2011, 98, 083302.
    16. T. Nakagawa, S.-Y. Ku, K.-T. Wong and C. Adachi, Chem.
    Commun., 2012, 48, 9580.
    17. G. Me´hes, H. Nomura, Q. Zhang, T. Nakagawa and C. Adachi,
    Angew. Chem., Int. Ed., 2012, 51, 11311.
    18. H. Tanaka, K. Shizu, H. Miyazaki and C. Adachi, Chem. Commun.,
    2012, 48, 11392.
    19. Q. Zhang, J. Li, K. Shizu, S. Huang, S. Hirata, H. Miyazaki, C.
    Adachi, J. Am. Chem. Soc., 2012, 134, 14706.
    20. H. Uoyama, K. Goushi, K. Shizu, H. Nomura and C. Adachi,
    Nature, 2012, 492, 234.
    21. J. Li, T. Nakagawa, J. MacDonald, Q. Zhang, H. Nomura, H.
    Miyazaki and C. Adachi, Adv. Mater., 2013, 25, 3319.
    22. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M.
    E. Thompson, S. R. Forrest, Nature, 1998, 395, 151.
    23. C. Adachi, M. A. Baldo, S. R. Forrest, M. E. Thompson, Appl. Phys.
    Lett., 2000, 77, 904.
    24. C. Adachi, M. A. Baldo, M. E. Thompson, S. R. Forrest, J. Appl.
    Phys., 2001, 90, 5048.
    25. W.-Y. Wong, C.-L. Ho, Coord. Chem. Rev. 2009, 253, 1709.
    26. M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, and Y. Taga, Appl.
    Phys. Lett., 2001, 79, 156.
    27. V. I. Adamovich, S. R. Cordero, P. I. Djurovich, A. Tamayo, M. E.
    Thompson, B. W. D'Andrade, S. R. Forrest, Org. Electron., 2003, 4,
    77.
    28. D. F. O'Brien, M. A. Baldo, M. E. Thompson, and S. R. Forrest,
    Appl. Phys. Lett., 1999, 74, 442.
    29. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B.
    Lüssem, Karl Leo, Nature, 2009, 459, 234.
    30. http://panasonic.co.jp/corp/news/official.data/data.dir/2013/05/en
    1305246/en130524- 6.html.
    31. J. H. Jou, S. Kumar, Y. C. Jou, “Disruptive characteristics and
    lifetime issues of organic light emitting diodes,” in Organic lightemitting
    diodes(OLEDs): materials, devices and applications, 1st ed.
    Cambridge, U.K.: Woodhead Publishing Ltd. 2012, ch. 14, sec.14.2,
    pp. 410-442.
    32. a) A. Poor, Display week 2014 review: OLEDs, SID2014,
    Information Displays, 5, 14, 10.; b) http://www.ultimoprezzo
    .com/blog/wp-content/uploads/2014/10/Samsung-Galaxy-Tab-S-8.
    4-LTE.jpg, c) http://www.phonearena.com/image.php?m=Review
    s.Images&f=name&id=149180&pop up=1.
    33. S. Sechrist, TVs, 3D, and holograms at display week 2014,
    SID2014, Information Displays, 5, 14, 14.
    34.http://rdcdlimited.com/~gogreen/index.php?option=com_content&
    view=article&id=54&Itemid=78. (U.S. Department of Energy).
    35. http://oled.beleuchtung-mit-led.de/osram-orbeos-oled.panel.http://
    www.gole m.de/ 1011/79187. html.
    36. http://www.acuitybrands.com/oled/why-oled.
    37. http://www.alkilu.com/
    38. J. H. Jou, C. Y. Hsieh, J. R. Tseng, S. H. Peng, Y. C. Jou, J. H.
    Hong, S. M. Shen, M. C. Tang, P. C. Chen, C. H. Lin, Adv. Funct.
    Mater., 2013, 23, 2750.
    39. J. H. Jou, C. Y. Hsieh, P. W. Chen, S. Kumar, J. H. Hong, J. Photon.
    Energy, 2014, 4, 043598.
    40. http://www.oledinfo.com/ companies/oled-lighting
    41. http://www.companiesandmarkets.com/Market/InformationTechn
    ology/MarketResearch/ OLED-Displays-and-Lighting-Market-to-
    2020 Technological-Innovations-Lead-to-Cost-Efficient-Productsand-
    New Aesthetics/RPT98 8924.
    42. A. Dodabalapur, Sol. Stat. Comm., 1997, 102, 259.
    43. T. D. Schmidt, Photophysics of organic light-emitting diodes:
    Device efficiency and degradation processes, PhD thesis, University
    of Augsburg, 2013.
    44. J. Frankel, Physical Review, 1931, 37, 17.
    45. M. Schwoerer and H. Wolf, Organic Molecular Solids, Wiley-
    VCH, Berlin, 2006.
    46. a) J. Shinar and V. Savvateev, in “Organic light-emitting devices-A
    survey”, edited by J. Shinar, Springer-Verlag New York Inc., NewYork, 2004.; b) E. L. Murphy, G. H. Good, Physical Review, 1956,
    102, 1464.
    47. A. Rakurthi, Improvement of efficiencies and lifetimes of white
    light-emitting organic diodes using a novel co-evaporated ‘holeconfining’
    structure, Master Thesis, University of Cincinnati, 2010.
    48. S. M. Sze, “Physics of semiconductor devices”, Wiley, New York,
    1981.
    49. Y. Kim and C.-S. Ha, “Advances in organic light-emitting device”,
    Trans Tech Publications Ltd., Switzerland/UK/USA, 2008.
    50. M. Pope and C. E. Swenberg, “Electronic processes in organic
    crystals”, 1st edition, Clarendon Press, Oxford, 1982.
    51. C. A. Parker, Photoluminescence of Solutions, Elsevier,
    Amsterdam, 1968.
    52. B. Valeur, Molecular Fluorescence: Principles and Applications,
    Wiley-VCH. Weinheim, 2002.
    53. S. Kalinin, M. Speckbacher, H. Langhals, L. B.-Å. Johansson, Phys.
    Chem. Chem. Phys., 2001, 3, 172.
    54. H. Langhals, J. Karolin, L. B.-Å. Johansson, J. Chem. Soc. Faraday
    Trans., 1998, 94, 2919.
    55. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N.
    Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Brédas,
    M. Lögdlund, W. R. Salaneck, Nature, 1999, 397, 121.
    56. M. A. Baldo and S. R. Forrest, Phys. Rev. B, 2000, 62, 10958.
    57. N. J. Turro, Modern Molecular Photochemistry, Benjamin Inc.,
    Menlo Park, 1978.
    58. D. Y. Kondakov, T. D. Pawlik, T. K. Hatwar, J. P. Spindler, J. Appl.
    Phys., 2009, 106, 124510.
    59. S. M. King, M. Cass, M. Pintani, C. Coward, F. B. Dias, A. P.
    Monkman, M. Roberts, J. Appl. Phys., 2011, 109, 074502.
    60. H. Fukagawa, T. Shimizu, N. Ohbe, S. Tokito, K. Tokumaru, H.
    Fujikake, Org. Electron., 2012, 13, 1197.
    61. C. A. Parker, C. G. Hatchard, Trans. Faraday Soc., 1961, 57, 1894.
    62. M. Cocchi, D. Virgili, G. Giro, V. Fattori, P. D. Marco, Appl. Phys.
    Lett., 2002, 80, 2401.
    63. N. Matsumoto, M. Nishiyama, C. Adachi, J. Phys. Chem., 2008,
    112, 7735.
    64. V. Jankus, C. J. Chiang, F. Dias, A. P. Monkman, Adv. Mater.,
    2013, 25, 1455.
    65. Y. Cao, I. D. Parker, G. Yu, C. Zhang, A. J. Heeger, Nature, 1999,
    397, 414.
    66. C.-G. Zhen, Z.-K. Chen, Q.-D. Liu, Y.-F. Dai, R.-YC Shin, S.-Y.
    Chang, J. Kieffer, Adv. Mater., 2009, 21, 2425.
    67. S. W. Yin, L. P. Chen, P. F. Xuan, K. Q. Chen, Z. Shuai, J. Phys.
    Chem. B, 2004, 108, 9608.
    68. M. T. Sun, P. Kjellberg, W. J. D. Beenken, T. Pullerits, Chem.
    Phys., 2006, 327, 474.
    69. P. Andrew, W. L. Barnes, Science, 2000, 290, 785.
    70. T. Förster, Discuss Faraday Soc., 1959, 27, 7.
    71. D. L. Dexter, J. Chem. Phys., 1953, 21, 836.
    72. Y. Tao, C. Yang, J. Qin, Chem. Soc. Rev., 2011, 40, 2943.
    73. D. Tanaka, Y. Agata, T. Takeda, S. Watanabe, J. Kido, Jpn. J. Appl.
    Phys., 2007, Part 2, 46, L117.
    74. J. S. Chen, C. S. Shi, Q. Fu, F. C. Zhao, Y. Hu, Y. L. Feng, and D.
    G. Ma, J. Mater. Chem., 2012, 22, 5164.
    75. T.-W. Lee, T. Noh, H.-W. Shin, O. Kwon, J.-J. Park, B.-K. Choi,
    M.-S. Kim, D. W. Shin, Y.-R. Kim, Adv. Mater., 2009, 19, 1625.
    76. J.-H. Jou, M.-F. Hsu, W.-B. Wang, C.-L. Chin, Y.-C. Chung, C.-T.
    Chen, J.-J. Shyue, S.-M. Shen, M.-H. Wu, W.-C. Chang, C.-P. Liu,
    S.-Z. Chen, H.-Y. Chen, Chem. Mater., 2009, 21, 2565.
    77. J.-H. Jou, C.-J. Li, S.-M. Shen, S.-H. Peng, Y.-L. Chen, Y.-C. Jou,
    J. H. Hong, C.-L. Chin, J.-J. Shyue, S.-P. Chen, J.-Y. Li, P.-H.
    Wang, C.-C. Chen, J. Mater. Chem. C, 2013, 1, 4201.
    78. J.-H. Jou, Y.-M. Yang, S.-Z. Chen, J.-R. Tseng, S.-H. Peng, C.-Y.
    Hsieh, Y.-X. Lin, C.- L. Chin, J.-J. Shyue, S.-S. Sun, C.-T. Chen,
    C.-W. Wang, C.-C. Chen, S.-H. Lai, F.-C. Tung, Adv. Opt. Mater.,
    2013, 1, 1657.
    79. J. H. Jou, S. Kumar, D. Tavgeniene, C. C. An, P. H. Fang, E.
    Zaleckas, J. V. Grazulevicius, S. Grigalevicius, J. Mater. Chem. C,
    2014, 2, 8707.
    80. A. Köhnen, N. Riegel, J. H.-W. M. Kremer, H. Lademann, D. C.
    Müller, K. Meerholz, Adv. Mater., 2009, 21, 879.
    81. T. Baumann, B. Rudat, Manufacturing of OLEDs-challenges and
    solutions, Dipl. Chem. Daniel Volz | 222908587.
    82. S. Reineke, K. Walzer, K. Leo, Phys. Rev. B: Condens. Matter
    Mater. Phys., 2007, 75, 125328.
    83. M. A. Baldo, C. Adachi, S. R. Forrest, Phys. Rev. B: Condens.
    Matter, 2000, 62, 10967.
    84. I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, Appl. Phys.
    Lett., 1993, 62, 131.
    85. I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, A. Scherer,
    Appl. Phys. Lett., 1993, 63, 2174.
    86. S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, E. F. Schubert,
    Phys. Rev. Lett., 1997, 78, 3294.
    87. R. Windisch, P. Heremans, A. Knobloch, P. Kiesel, G. H. Dohler,
    B. Dutta, G. Borghs, Appl. Phys. Lett., 1999, 74, 2256.
    88. M. Fujita, T. Ueno, S. Noda, H. Ohhata, T. Tsuji, H. Nakada, N.
    Shimoji, Electronics Lett., 2003, 39, 1750.
    89. Y. Sun and S. R. Forrest, Nature Photon., 2008, 2, 483.
    90. W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T.
    Toyooka, H. Takezoe, Nature Photon., 2010, 4, 222.
    91. Y. J. Lee, S. H. Kim, J. Huh, G. H. Kim, Appl. Phys. Lett., 2003,
    82, 3779.
    92. K. Saxena, D. S. Mehta, V. K. Rai, R. Srivastava, G. Chauhan, and
    M. N. Kamalasanan, J. of Luminescence, 2008, 128, 525.
    93. T. Bocksrocker, J. Hoffmann, C. Eschenbaum, A. Pargner, J.
    Preinfalk, F. M. Flaig, U. Lemmer, Org. Electron., 2013, 14, 396.
    94. S. Wedge, J. A. E. Wasey, W. L. Barnes, Appl. Phys. Lett., 2004,
    85, 182.
    95. R. Meerheim, R. Nitsche, K. Leo, Appl. Phys. Lett., 2008, 93,
    043310.
    96. a) S. Möller, S. R. Forrest, J. Appl. Phys., 2002, 91, 3324.; b) J.-S.
    Kim, P. K. H. Ho, N. C. Greenham, R. H. Friend, J. Appl. Phys.,
    2000, 88, 1073.; c) D. Yokoyama, A. Sakaguchi, M. Suzuki, C.
    Adachi, Organ. Electron., 2009, 10 127.
    97. M. G. Colombo, T. C. Brunold, T. Reidener, H. U. Güdel, M.
    Förtsch, H. Bürgi, Inorg. Chem. 1994, 33, 545.
    98. T.-W. Kuo, H.-P. Chung and T.-M. Chen, Chem. Lett., 2010, 39,
    200.
    99. T. Sudyoadsuk, P. Moonsin, N. Prachumrak, S. Namuangruk, S.
    Jungsuttiwong, T. Keawin, V. Promarak, Polym. Chem., 2014, 5,
    3982.
    100. F. Ma, X. Liu, C. Zhang, H. Li, L. Wang, Jpn. J. Appl. Phys.,
    2006, 45, 9224.
    101. Y. H. Kim, D. C. Shin, S. H. Kim, C. H. Ko, H. S. Yu, Y. S. Chae,
    S. K. Kwon, Adv. Mater., 2001, 13, 1690.
    102. J. H. Jou, Y. P. Lin, M. F. Hsu, M. H. Wu, P. Lu, Appl. Phys.
    Lett., 2008, 92, 193314.
    103. L. S. Hung, C. H. Chen, Mat. Sci. Eng.-R, 2002, 39, 143.
    104. Publication report from Web of Science on December 16th 2014
    for the search of key word: ‘‘Blue organic light emitting diodes’’.
    105. Y.-H. Kim, H.-C. Jeong, S.-H. Kim, K. Yang, S.-K. Kwon, Adv.
    Funct. Mater., 2005, 15, 1799.
    106. Y.-H. Niu, B. Chen, T.-D. Kim, M.S. Liu, A.K.-Y. Jen, Appl.
    Phys. Lett., 2004, 85, 5433.
    107. Z.Q. Gao, Z.H. Li, P.F. Xia, M.S. Wong, K.W. Cheah, C.H.
    Chen, Adv. Funct. Mater., 2007, 17, 3194.
    108. S. Tang, M.R. Liu, P. Lu, H. Xia, M. Li, Z.Q. Xie, F.Z. Shen, C.
    Gu, H.P. Wang, B. Yang, Y. Ma, Adv. Funct. Mater., 2007, 17,
    2869.
    109. T.-C. Tsai, W.-Y. Hung, L.-C. Chi, K.-S. Wong, C.-C. Hsieh, P.-
    T. Chou, Org. Electron., 2009, 10, 158.
    110. Y.-H. Lee, T.-C. Wu, C.-W. Liaw, T.-C. Wen, T.-F. Guo, Y.-T.
    Wu, J. Mater. Chem., 2012, 22, 11032.
    111. C. H. Hsiao, C. F. Lin, J. H. Lee, J. Appl. Phys., 2007, 102,
    094508.
    112. J. Morovič, Color gamut mapping, Wiley InterScience, John
    Wiley & Sons, Ltd., 2008.
    113. W.-T. Liu, W.-Y. Huang, Opt. Eng., 2012, 51, 104001-1.
    114. B.W. D’Andrade, S. R. Forrest, Adv. Mater., 2004, 16, 1585.
    115. D. Travis, Effective Color Displays: Theory and Practice.,
    Academic Press, London, 1991.
    116. J.-H. Jou, Y.-L. Chen, J.-R. Tseng, R.-Z. Wu, J.-J. Shyue, K. R.
    J. Thomas, N. Kapoor, C.-T. Chen, Y.-P. Lin, P.-H. Wang, H.-W.
    Hung, J.-Y. Li, and S.-P. Chen, J. Mater. Chem., 2012, 22, 15500.
    117. L.-H. Chan, H.-C. Yeh, C.-T. Chen, Adv. Mater., 2001, 13, 1637.
    118. H.-T. Shih, C.-H. Lin, H.-H. Shih, C.-H. Cheng, Adv. Mater.,
    2002, 14, 1409.
    119. Y.-H. Kim, H.-C. Jeong, S.-H. Kim, K. Yang, S.-K. Kwon, Adv.
    Funct. Mater., 2005, 15, 1799.
    120. K. Wang, F. Zhao, C. Wang, S. Chen, D. Chen, H. Zhang, Y. Liu,
    D. Ma, Y. Wang, Adv. Funct. Mater., 2013, 23, 2672.
    121. B. Wei, J.-Z. Liu, Y. Zhang, J.-H. Zhang, H.-N. Peng, H.-L. Fan,
    Y.-B. He, X.-C. Gao, Adv. Funct. Mater., 2010, 20, 2448.
    122. C. W. Lee, J. Y. Lee, Adv. Mater., 2013, 25, 5450.
    123. S. J. Su, E. Gonmori, H. Sasabe, J. Kido, Adv. Mater., 2008, 20,
    4189.
    124. N. Chopra, J. Lee, Y. Zheng, S.-H. Eom, J. Xue, F. So, ACS Appl.
    Mater. & Inter., 2009, 1, 1169.
    125. J.-H. Jou, W.-B. Wang, S.-M. Shen, S. Kumar, I-M. Lai, J.-J.
    Shyue, S. Lengvinaite, R. Zostautiene, J. V. Grazulevicius, S.
    Grigalevicius, S.-Z. Chen, C.-C. Wu, J. Mater. Chem., 2011, 21,
    9546.
    126. J. H. Jou, W. B. Wang, M. F. Hsu, J. J. Shyue, C. H. Chiu, I. M.
    Lai, S. Z. Chen, P. S. Wu, C. C. Chen, C. P. Liu and S. M. Shen,
    ACS Nano, 2010, 4, 4054.
    127. T. Serevičius, T. Nakagawa, M.-C. Kuo, S.-H. Cheng, K.-T.
    Wong, C.-H. Chang, R. C. Kwong, S. Xia, C. Adachi, Phys. Chem.
    Chem. Phys., 2013, 15, 15850.
    128. S. Wu, M. Aonuma, Q. Zhang, S. Huang, T. Nakaqawa, K.
    Kuwabara, C. Adachi, J. Mater. Chem., C 2014, 2, 421.
    129. X.-L. Chen, R. Yu, Q.-K. Zhang, L.-J. Zhou, X.-Y. Wu, Q.
    Zhang, C.-Z. Lu, Chem. Mater., 2013, 25, 3910.
    130. Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, C. Adachi,
    Nature Photon., 2014, 8, 326.
    131. H. Nakanotani, T. Higuchi, T. Furukawa, K. Masui, K.
    Morimoto, M. Numata, H. Tanaka, Y. Sagara, T. Yasuda, C. Adachi,
    Nat. Commun., 2014, 5:4016 doi: 10.1038/ncomms5016.
    132. J. L. Segura, Acta Polym., 1998, 49, 319.
    133. K. Okumoto, Y. Shirota, Chem. Mater., 2003, 15, 699.
    134. C. C. Wu, Y. T. Lin, K. T. Wong, R. T. Chen, Y. Y. Chien, Adv.
    Mater., 2004, 16, 61.
    135. K. T. Wong, R. T. Chen, F. C. Fang, C. C. Wu, Y. T. Lin, Org.
    Lett., 2005, 7, 1979.
    136. J. Y. Shen, C. Y. Lee, T. H. Huang, J. T. Lin, Y. T. Tao, C. H.
    Chien, C. Tsai, J. Mater. Chem., 2005, 15, 2455.
    137. H. Tokailin, H. Higashi, C. Hosokawa, and T. Kusumoto, Proc.
    SPIE, 1993, 1910, 38.
    138. C. Hosokawa, H. Higashi, H. Nakamura, T. Kusumoto, Appl.
    Phys. Lett. 1995, 67, 3853.
    139. M. T. Lee, H. H. Chen, C. H. Liao, C. H. Tsai, and C. H. Chen,
    Appl. Phys. Lett., 2004, 85, 3301.
    140. C. W. Lee, Y. Im, J. A. Seo, Y. Lee, Chem. Commun., 2013, 49,
    9860.
    141. J.-K. Bin, N.-S. Cho, J.-I. Hong, Adv. Mater., 2012, 24, 2911.
    142. S. O. Jeon, S. E. Jang, H. S. Son, J. Y. Lee, Adv. Mater., 2011,
    23, 1436.
    143. H. Sasabe, J. Takamatsu, T. Motoyama, S. Watanabe, G.
    Wagenblast, N. Langer, O. Molt, E. Fuchs, C. Lennartz, J. Kido,
    Adv. Mater., 2010, 22, 5003.
    144. P. Schrögel, N. Langer , C. Schildknecht, G. Wagenblast, C.
    Lennartz, P. Strohriegl, Org. Electron., 2011, 12, 2047.
    145. R. J. Holmes, S. R. Forrest, T. Sajoto, A. Tamayo, P. I.
    Djurovich, M. E. Thompson, J. Brooks, Y.-J. Tung, B. W.
    D’Andrade, M. S. Weaver, R. C. Kwong, J. J. Brown, Appl. Phys.
    Lett., 2005, 87, 243507.
    146. K. Udagawa , H. Sasabe , C. Cai , J. Kido, Adv. Mater., 2014,
    DOI: 10.1002/adma.201401621.
    147. K.-R. Wee, A.-L. Kim, S.-Y. Jeong, S. Kwon, S. O. Kang, Org.
    Electron., 2011, 12, 1973.
    148. K. S. Yook, J. Y. Lee, J. Mater. Chem., 2012, 22, 14546.
    149. F. Zhang, L. Duan, J. Qiao, G. Dong, L. Wang, Y. Qiu, Org.
    Electron., 2012, 13, 1277.
    150. X. Zhang, C. Jiang, Y. Mo, Y. Xu, H. Shi, Y. Cao, Appl. Phys.
    Lett., 2006, 88, 051116.
    151. C. Schildknecht, G. Ginev, A. Kammoun, T. Riedl, W.
    Kowalsky, H.-H. Johannes, C. Lennartz, K. Kahle, M. Egen, T.Geßner, M. Bold, S. Nord, P. Erk, Proc. of SPIE, 2005, 5937
    59370E-1.
    152. J. Lee, J.-I. Lee, J.-W. Lee, H. Y. Chu, Org. Electron., 2010, 11,
    1159.
    153. S.-J. Yeh, M.-F. Wu, C.-T. Chen, Y.-H. Song, Y. Chi, M.-H. Ho,
    S.-F. Hsu, C.-H. Chen, Adv. Mater., 2005, 17, 285.
    154. S. O. Jeon, K. S. Yook, C. W. Joo, J. Y. Lee, Adv. Funct. Mater.,
    2009, 19, 3644.
    155. S. Tao, S. L. Lai, C. Wu, T. W. Ng, M. Y. Chan, W. Zhao, X.
    Zhang, Org. Electron., 2011, 12, 2061.
    156. S. J. Lee, K.-M. Park, K. Yang, Y. Kang, Inorg. Chem., 2009, 48,
    1030.
    157. C. Wu, S. Tao, M. Chen, F.-L. Wong, Q. Yang, H.-W. Mo,
    W. Zhao, C.-S. Lee, Dyes and Pigments, 2013, 96, 237
    158. H.-F. Chen, L.-C. Chi, W.-Y. Hung, W.-J. Chen, T.-Y. Hwu, Y.-
    H. Chen, S.-H. Chou, E. Mondal, Y.-H. Liu, K.-T. Wong, Org.
    Electron., 2012, 13, 2671.
    159. C.-H. Hsieh, F.-I. Wu, C.-H. Fan, M.-J. Huang, K.-Y. Lu, P.-Y.
    Chou, Y.-H. Ou Yang, S.-H. Wu, I-C. Chen, S.-H. Chou, K.-T.Wong, C.-H. Cheng, Chem. Eur. J., 2011, 17, 9180.
    160. K.-Y. Lu, H.-H. Chou, C.-H. Hsieh, Y-H. O. Yang, H.-R. Tsai,
    H.-Y. Tsai, L.-C. Hsu, C.-Y. Chen, I-C. Chen, C.-H. Cheng, Adv.
    Mater., 2011, 23, 4933.
    161. Y.-C. Chiu, J.-Y. Hung, Y. Chi, C.-C. Chen, C.-H. Chang, C.-C.
    Wu, Y.-M. Cheng, Y.-C. Yu, G.-H. Lee, P.-T. Chou, Adv. Mater.,
    2009, 21, 2221.
    162. S. Lee, S.-O. Kim, H. Shin, H.-J. Yun, K.l Yang, S.-K. Kwon, J.-
    J. Kim, Y.-H. Kim, J. Am. Chem. Soc., 2013, 135, 14321.
    163. F. Kessler, Y. Watanabe, H. Sasabe, H. Katagiri, M. K.
    Nazeeruddin, M. Grӓtzel, J. Kido, J. Mater. Chem. C, 2013, 1, 1070.
    164. J. Zhuang, W. Li, W. Su, Y. Liu, Q. Shen, L. Liao, M. Zhou, Org.
    Electron., 2013, 14, 2596.
    165. Y. Zhang, J. Lee, S. R. Forrest, Nat. Commun., 2014, DOI:
    10.1038/ncomms6008.
    166. J.-B. Kim, S.-H. Han, K. Yang, S.-K. Kwon, J.-J. Kim, Y.-H.
    Kim, Chem. Commun., 2014, DOI: 10.1039/c4cc07768g.
    167. J.-H. Lee, G. Sarada, C.-K. Moon, W. Cho, K.-H. Kim, Y. G.
    Park, J. Y. Lee, S.-H. Jin, J.-J. Kim, Adv. Optical Mater. 2014, DOI:
    10.1002/adom.201400350.
    168. X.-L. Chen, R. Yu, Q.-K. Zhang, L.-J. Zhou, X.-Y. Wu, Q. Zhang,
    C.-Z. Lu, Chem. Mater., 2013, 25, 3910.
    169. S. Hirata, Y. Sakai, K. Masui, H. Tanaka, S. Y. Lee, H. Nomura,
    N. Nakamura, M. Yasumtsu, H. Nakanotani, Q. Zhang, K. Shizu, H.
    Miyazaki, C. Adachi, Nature Mater., 2014, DOI:
    10.1038/NMAT4154.
    170. M. Zhu, C. Yang, Chem. Soc. Rev., 2013, 42, 4963.
    171. R. E. Martin, F. Diederich, Angew Chem Int Ed., 1999, 38, 1350.
    172. T. M. Figueira-Duarte, K. Müllen, Chem. Rev., 2011, 111, 7260.
    173. K. L. Chan, J. P. F. Lim, X. Yang, A. Dodabalapur, G. E.
    Jabbour, A. Sellinger, Chem. Commun., 2012, 48, 5106.
    174. X. Feng, J. Y. Hu, L. Yi, N. Seto, Z. Tao, C. Redshaw, M. R. J.
    Elsegood, T. Yamato, Chem. Asian J., 2012, 7, 2854.
    175. A. Thangthong, N. Prachumrak, R. Tarsang, T. Keawin, S.
    Jungsuttiwong, T. Sudyoadsuk, V. Promarak, J. Mater. Chem.,
    2012, 22, 6869.
    176. S.-K. Kim, B. Yang, Y. Ma, J.-H. Lee, J.-W. Park, J. Mater.
    Chem., 2008, 18, 3376.
    177. C.-H. Chien, C.-K. Chen, F.-M. Hsu, C.-F. Shu, P.-T. Chou, C.-
    H. Lai, Adv. Funct. Mater., 2009, 19, 560.
    178. J.-Y. Hu, Y.-J. Pu, F. Satoh, S. Kawata, H. Katagiri, H. Sasabe,
    J. Kido, Adv. Funct. Mater., 2014, 24, 2064.
    179. R. Kim, S. Lee, K.-H. Kim, Y.-J. Lee, S.-K. Kwon, J.-J. Kim, Y.-
    H. Kim, Chem. Commun., 2013, 49, 4664.
    180. S. Setayesh, A. C. Grimsdale, T. Weil, V. Enkelmann, K. Müllen,
    F. Meghdadi, E. J. W. List, G. Leising, J. Am. Chem. Soc., 2001,
    123, 946.
    181. S. H. Lee, T. Nakamura, T. Sutsui, Org. Lett., 2001, 3, 2005.
    182. N. Matsumoto, T. Miyazaki, M. Nishiyama, C. Adachi, J. Phys.
    Chem. C, 2009, 113, 6261.
    183. J. B. Birks, Photophysics of Aromatic Molecules. Wiley-
    Interscience, New York, 1970.
    184. Q. B. Pei, Y. Yang, J. Am. Chem. Soc., 1996, 118, 7416.
    185. (a) D. Neher, Macromol Rapid Commun, 2001, 22, 1365. and (b)
    U. Scherf, E.J.W. List, Adv Mater., 2002, 14, 477.
    186. A. Charas, J. Morgado, J. M. Martinho, A. Fedorov, L. Alcecer,
    F. Cacialli, J. Mater. Chem., 2002, 12, 3523.
    187. G. Heliotis, P. N. Stavrinou, D. C. C. Bradley, E. Gu, C. Griffin,
    C. W. Jeon, M. D. Dawson, Appl. Phys. Lett., 2005, 87, 103505.
    188. A. Charas, H. Alves, L. Alcacer, and J. Morgado, Appl. Phys.
    Lett., 2006, 89, 143519.
    189. I. O. Huyal, U. Koldemir, T. Ozel, H. V. Demir, and D. Tuncel,
    J. Mater. Chem., 2008, 18, 3568.
    190. T. V. Woudenbergh, J. Wildeman, P. W. M. Blom, J. J. A. M.
    Bastiaansen, B. M. W. Langeveld-Voss, Adv. Funct. Mater., 2004,
    14, 677.
    191. S. W. Culligan, Y. Geng, S. H. Chen, K. Klubek, K. M. Vaeth,
    C. W. Tang, Adv. Mater., 2003, 15, 1176.
    192. H. Yan, Q. Huang, J. Cui, J. G. C. Veinot, M. M. Kern, T. J.
    Marks, Adv. Mater., 2003, 15, 835.
    193. M. C. Suh, B. D. Chin, M. Kim, T. M. Kang, S. T. Lee, Adv.
    Mater., 2003, 15, 1254.
    194. S. Lo, G. J. Fichards, J. P. J. Markham, E. B. Namdas, S. Sharma,
    P. L. Burn, I. D. W. Samuel, Adv. Funct. Mater., 2005, 15, 1451.
    195. H. Lu, C. Liu, C. Chang, S. Chen, Adv. Mater., 2007,19, 2574.
    196. J. Liu, J. H. Zou, W. Yang, H. B. Wu, C. Li, B. Zhang, J. B. Peng,
    Y. Cao, Chem. Mater., 2008, 20, 4499.
    197. M. Kreyenschmidt, G. Klaerner, T. Fuhrer, J. Ashenhurst, S.
    Karg, W. D. Chen, V. Y. Lee, J. C. Scott, R. D. Miller,
    Macromolecules, 1998, 31, 1099.
    198. A. W. Grice, D. D. C. Bradley, M. T. Bernius, M. Inbasekaran,
    W. W. Wu, E. P. Woo, Appl. Phys. Lett., 1998, 73, 629.
    199. F. Huang , Y. Zhang, M. S. Liu, Y. J. Cheng, A. K. Y. Jen, Adv.
    Funct. Mater., 2007, 17, 3808.
    200. Q. Zhao, S. J. Liu, W. Huang, Macromol. Chem. Phys., 2009,
    210, 1580.
    201. M.-C. Hung, J. L. Liao, S. A. Chen, S. H. Chen, A. C. Su, J. Am.
    Chem. Soc., 2005, 127, 14576.
    202. U. Lemmer, S. Heun, R. F. Mahrt, U. Scherf, M. Hopemeier, U.
    Siegner, E. O. Göbel, K. Müllen, H. Bӓssler, Chem. Phy. Lett., 1995,
    240, 374.
    203. S. A. Jenekhe, J. A. Osaheni, Science, 1994, 265, 765.
    204. G. Klӓner, M. H. Davey, W. D. Chen, J. C. Scott, R. D. Miller,
    Adv. Mater., 1998, 10, 993.
    205. J. Teetsov, M. A. Fox, J. Mater. Chem., 1999, 9, 2117.
    206. E. J. W. List, R. Guentner, P. S. De Freitas, U. Scherf, Adv.
    Mater., 2002, 14, 374.
    207. L. Romaner, A. Pogantsch, P. S. De Freitas, U. Scherf, Adv.
    Funct. Mater., 2003, 13, 597.
    208. Q. Peng, J. B. Peng, E. T. Kang, K. G. Neoh, Y. Cao,
    Macromolecules, 2005, 38, 7292.
    209. F. Montilla, R. Mallavia, Adv. Funct. Mater., 2007, 17, 71.
    210. M. Sims, D. D. C. Bradley, A. Ariusimakis, M. Grell, D. G.
    Lidzey, Adv. Funct. Mater., 2004, 14, 765.
    211. S. Y. Cho, A. C. Grimsdale, D. J. Jones, S. E. Watkins, A. B.
    Holmes, J. Am. Chem. Soc., 2007, 129, 11910.
    212. Z. H. Li, M. S. Wong, Y. Tao, J. P. Lu, Chem. Eur. J., 2005, 11,
    3285.
    213. Z. H. Li, M. S. Wong, H. Fukutani, Y. Tao, Chem. Mater., 2005,
    17, 5032.
    214. C. Ego, A. C. Grimsdale, F. Uckert, G. Yu, G. Srdanov, K.
    Müllen, Adv. Mater., 2002, 14, 809.
    215. A. Pogantsch, F. P. Wenzl, E. J. W. List, G. Leising, A. C.
    Grimsdale, K. Müllen, Adv. Mater., 2002, 14, 1061.
    216. D. Marsitzky, R. Vestberg, P. Blainey, B. T. Tang, C. J. Hawker,
    K. R. Carter, J. Am. Chem. Soc., 2001, 123, 6965.
    217. F.-I. Wu, D. S. Reddy, C.-F. Shu, M. S. Liu, A. K.-Y. Jen, Chem.
    Mater., 2003, 15, 269.
    218. M. Ranger, M. Leclerc, Macromolecules, 1999, 32, 3306.
    219. S. Thayumanavan, S. Barlow, S. R. Marder, Chem. Mater., 1997,
    9, 3231.
    220. C.-F. Shu, R. Dodda, F.-I. Wu, M. S. Liu, A. K.-Y. Jen,
    Macromolecules, 2003, 36, 6698.
    221. H. Z. Tang, M. Fujiki, Z. B. Zhang, K. Torimitsu, M. Motonaga,
    Chem. Commun., 2001, 23, 2426.
    222. C. H. Chou, C. F. Shu, Macromolecules, 2002, 35, 9673.
    223. Y. Geng, S. W. Culligan, A. Trajkovska, J. U. Wallace, S. H.
    Chen, Chem. Mater., 2003, 15, 542.
    224. X. Gong, P. K. Iyer, D. Moses, G. C. Bazan, A. J. Heeger, S. S.
    Xiao, Adv. Funct. Mater., 2003, 13, 325.
    225. M. Gaal, E. J. List, U. Scherf, Macromolecules, 2003, 36, 4236.
    226. W.-Y. Lai, R. Zhu, Q.-L. Fan, L.-T. Hou, Y. Cao, W. Huang,
    Macromolecules, 2006, 39, 3707.
    227. Q. D. Liu, J. Lu, J. Ding, M. Day, Y. Tao, P. Barrios, J. Stupak,
    K. Chan, J. Li, Y. Chi, Adv. Funct. Mater., 2007, 17, 1028.
    228. W. Y. Lai, Q. Y. He, R. Zhu, Q. Q. Chen, W. Huang, Adv. Funct.
    Mater., 2008, 18, 265.
    229. F. Liu, W.-Y. Lai, C. Tang, H.-B. Wu, Q.-Q. Chen, B. Peng, W.
    Wei, W. Huang, Y. Cao, Macromol. Rapid Commun., 2008, 29, 659.
    230. W.-Y. Lai, R. Xia, Q.-Y. He, P. A. Levermore, W. Huang, D. D.
    C. Bradley, Adv. Mater., 2009, 21, 355.
    231. A. L. Kanibolotsky, I. F. Perepichka, P. J. Skabara, Chem. Soc.
    Rev., 2010, 39, 2695.
    232. W.-Y. Lai, R. Xia, D. D. C. Bradley, W. Huang, Chem. Eur. J.,
    2010, 16, 8471.
    233. H. Huang, Q. Fu, S. Zhuang, Y. Liu, L. Wang, J. Chen, D. Ma,
    C. Yang, J. Phys. Chem. C, 2011, 115, 4872.
    234. Y. Zou, J. Zou, T. Ye, H. Li, C. Yang, H. Wu, D. Ma, J. Qin, Y.
    Cao, Adv. Funct. Mater., 2013, 23, 1781.
    235. C. Liu, Y. Li, Y. Zhang, C. Yang, H. Wu, J. Qin, Y. Cao, Chem.
    Eur. J. , 2012, 18, 6928.
    236. A. L. Kanibolotsky, R. Brridge, P. J. Skabara, I. F. Perepichka,
    D.D.C. Bradley, M. Koeberg, J. Am. Chem. Soc., 2004, 126, 13695.
    237. W. Y. Lai, R. Xia, D. D. C. Bradley, W. Huang, Chem. Eur. J.,
    2010, 16, 8471.
    238. W. Y. Lai, Q. Q. Chen, Q. Y. He, Q. L. Fan, W. Huang, Chem.
    Commun., 2006, 1959.
    239. J. S. Yang, Y. R. Lee, J. L. Yan, M. C. Lu, Org. Lett., 2006, 8,
    5813.
    240. D. Katsis, Y. H. Geng, J. J. Ou, S. W. Culligan, A. Trakovska, S.
    H. Chen, L. J. Rothberg, Chem. Mater., 2002, 14, 1332.
    241. L. Wang, Y. Jiang, J. Luo, Y. Zhou, J. Zhou, J. Wang, J. Pei, Y.
    Cao, Adv. Mater., 2009, 21, 4854.
    242. C.-G. Zhen, Y.-F. Dai, W.-J. Zeng, Z. Ma, Z.-K. Chen, J. Kieffer,
    Adv. Funct. Mater., 2011, 21, 699.
    243. T. Li, T. Yamamoto, H.-L. Lan, J. Kido, Polym. Adv. Technol.,
    2004, 15, 266.
    244. S. L. Tao, Z. K. Peng, X. H. Zhang, P. F. Wang, C. S. Lee, S. T.
    Lee, Adv. Funct. Mater., 2005, 15, 1716.
    245. R. J. Tseng, R. C. Chiechi, F. Wudl, Y. Yang, Appl. Phys. Lett.,
    2006, 88, 093512.
    246. S. Tao, Y. Zhou, C.-S. Lee, C. Zhang, S.-T. Lee, Chem. Mater.,
    2010, 22, 2138.
    247. S. O. Kim, K. H. Lee, G. Y. Kim, J. H. Seo, Y. K. Kim, S. S.
    Yoon, Synthetic Metals, 2010, 160, 1259.
    248. J.-H. Jou , J.-R. Tseng, K.-Y. Tseng, W.-B. Wang, Y.-C. Jou, S.-
    M. Shen, Y.-L. Chen, W.-Y. Hung, S.-Z. Chen, T.-Y. Ding, H.-C.
    Wang, Org. Electron., 2012, 13, 2893.
    249. G. Jones II, W. R. Jackson, C.-Y. Choi, W. R. Bergmark, J. Phys.
    Chem., 1985, 89, 294.
    250. C.-H. Chen, J.-T. Lin, M.-C. P. Yeh, Tetrahedron, 2006, 62,
    8564.
    251. Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B.
    Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A.
    Montgomery, Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam,
    S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G.
    Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M.
    Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,
    Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P.
    Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.
    Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C.
    Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P.
    Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D.
    Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K.
    Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S.
    Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P.
    Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith,M. A. AlLaham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W.
    Gill, B. Johnson,W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople,
    Gaussian, Inc., Wallingford CT 2004.
    252. A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
    253. J. H. Jou, Y. S. Chiu, C. P. Wang, R. Y. Wang and H. C. Hu,
    Appl. Phys. Lett., 2006, 88, 193501.
    254. J. S. Wilson, A. S. Dhoot, A. J. A. B. Seeley, M. S. Khan, A.
    Kohler, R. H. Friend, Nature, 2001, 413, 828.
    255. Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, S. R.
    Forrest, Nature, 2006, 440, 908.
    256. M. A. Baldo, D. F. O’Brien, M. E. Thompson, and S. R. Forrest,
    Phys. Rev. B, 1999, 60, 14422.
    257. M. Segal, M. A. Baldo, R. J. Holmes, S. R. Forrest, and Z. G.
    Soos, Phys. Rev. B, 2003, 68, 075211.
    258. Commission International de L’Eclairage (CIE), Calorimetry,
    Publication Report No. 15.2, 1986.
    259. T. Smith, J. Guild, Trans. Opt. Soc., 1931, 33, 73.
    260. C. Liu, Y. Li, Y. Li, C. Yang, H. Wu, J. Qin, Y. Cao, Chem.
    Mater., 2013, 25, 3320.
    261. D. Kumar, K. R. J. Thomas, C.-C. Lin, J.-H. Jou, Chem. Asian J.,
    2013, 8, 2111.
    262. V. Bulovic, R. Deshpande, M. E. Thompson, S. R. Forrest, Chem.
    Phys. Lett., 1999, 308, 317.
    263. V. Bulovic, A. Shustikov, M. A. Baldo, E. Bose, V. G. Kozlov,
    M. E. Thompson, S. R. Forrest, Chem. Phys. Lett., 1998, 287, 455.
    264. S. J. Lee, J. S. Park, K.-J. Yoon, Y.-I. Kim, S.-H. Jin, S. K. Kang,
    Y.-S. Gal, S. Kang, J. Y. Lee, J.-W. Kang, S.-H. Lee, H.-D. Park, J.-
    J. Kim, Adv. Funct. Mater., 2008, 18, 3922.
    265. T. Peng, K. Ye, Y. Liu, L. Wang, Y. Wu, Y. Wang, Org.
    Electron., 2011, 12, 1914.
    266. B. A. Kamino, Y.-L. Chang, Z.-H. Lu, and T. P. Bender, Org.
    Electron., 2012, 13, 1479.
    267. S. Jeong, M.-K. Kim, S. H. Kim, J.-I. Hong, Org. Electron.,
    2013, 14, 2497.
    268. Y. Yu, Z. Wu, Z. Li, B. Jiao, L. Li, L. Ma, D. Wang, G. Zhou, X.
    Hou, J. Mater. Chem., 2013, 1, 8117.
    269. K. E. Linton, A. L. Fisher, C. Pearson, M. A. Fox, L. O. Palsson,
    M. R. Bryce, M. C. Petty, J. Mater. Chem., 2012, 22, 11816.
    270. G. Liaptsis, K. Meerholz, Adv. Funct. Mater., 2013, 23, 359.
    271. Y. H. Niu, M. S. Liu, J. W. Ka, J. Bardeker, M. T. Zin, R.
    Schofield, Y. Chi, A. K. Y. Jen, Adv. Mater., 2007, 19, 300.
    272. D. Y. Kondakov, J. Appl. Phys., 2008, 104, 084520.
    273. D. Y. Kondakov, W. C. Lenhart, W. F. Nichols, J. Appl. Phys.,
    2007, 101, 024512.
    274. H. Becker, H. Vestweber, A. Gerhard, P. Stoessel, H. Heil, and
    R. Fortte, SID Int. Symp. Digest Tech. Papers, 2005, 36, 1062.
    275. S. H. Kim, J. Jang, J. Y. Lee, Appl. Phys. Lett., 2007, 90, 203511.
    276. S.-Y. Yu, J.-H. Chang, P.-S. Wang, C.-I Wu, Y.-T. Tao,
    Langmuir, 2014, 30, 7369.
    277. M. Zhang, S. Xue, W. Dong, Q. Wang, T. Fei, C. Gua, Y.
    Ma, Chem. Commun., 2010, 46, 3923.
    278. M. Zhu, T. Ye, C.-G. Li, X. Cao, C. Zhong, D. Ma, J. Qin, C.
    Yang J. Phys. Chem. C, 2011, 115, 17965.
    279. I. Cho, S. H. Kim, J. H. Kim, S. Park, S. Y. Park, J. Mater. Chem.,
    2012, 22, 123.
    280. C. Liu, Y. Gu, Q. Fu, N. Sun, C. Zhong, D. Ma, J. Qin, C. Yang,
    Chem. Eur. J., 2012, 18, 13828.
    281. E.-S. Hellerich, J. J. Intemann, M. Cai, R. Liu, M. D. Ewan, B.
    C. Tlach, M. Jeffries-EL, R. Shinar, J. Shinar, J. Mater. Chem. C,
    2013, 1, 5191.
    282. C. Liu, Y. Li, C. Yang, H. Wu, J. Qin, Y. Cao, Chem. Mater.
    2014, 26, 3074.
    283. J.-H. Cook, J. Santos, H. Li, H. A. Al-Attar, M. R. Bryce, A. P.
    Monkman, J. Mater. Chem. C, 2014, 2, 5587.
    284. C. J. Tonzola, A. P. Kulkarni, A. P. Gifford, W. Kaminsky, S. A.
    Jenekhe, Adv. Funct. Mater., 2007, 17, 863.
    285. Z. Wang, Y. Feng, S. Zhang, Y. Gao, Z. Gao, Y. Chen, X. Zhang,
    P. Lu, B. Yang, P. Chen, Y. Ma, S. Liu, Phys. Chem. Chem. Phys.,2014, 16, 20772.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE