研究生: |
蘇迪庫馬 KUMAR, SUDHIR |
---|---|
論文名稱: |
Fabrication Study of Highly-Efficient Deep-Blue Organic Light Emitting Diodes |
指導教授: |
周卓煇
Jou, Jwo-Huei |
口試委員: |
蔡永誠
Tsai,Yung-Cheng 薛景中 Shyue,Jing-Jong 陳建添 Chen,Chien-Tien 岑尚仁 Chen,Sun-Zen |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 178 |
中文關鍵詞: | 有機發光二極體 、高效率 、深藍光 、寬波段 、氰氟乙炔 、溶劑化顯色 、高量子效率 、主客體能量轉移 、熱穩定性 |
外文關鍵詞: | Organic light emitting diode, high efficiency, ultra-deep blue, wide color gamut, cyanofluorene acetylene, sovatochromatism, high quantum yield, host to guest energy transfer, thermal stability |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Deep blue emission is crucial for achieving high-quality displays and lightings, while high-efficiency is required to enable the corresponding products energy-saving. Wet- and dry-process feasible efficient deep-blue emitter is highly desired to realize, respectively, low cost roll-to-roll fabrication of large area and high performance devices with precise deposition of organic layers. In this study, we demonstrate high efficiency ultra-deep blue and deep-blue organic light-emitting diodes (OLEDs) using cyanofluorene acetylene conjugate based emitters. Their results and discussion will be shown in two parts.
In the first part, we present high-efficiency and ultra-deep blue OLEDs using a cyanofluorene-acetylene conjugate based emitter, 7,7' ((9,9-dibutyl-
9H-fluorene-2,7-diyl)bis(ethyne-2,1-diyl))bis(9,9-dipropyl-9H-fluorene-2 carbo-nitrile) (C3FLA-2). By spin coating, the C3FLA-2 shows maximum external quantum efficiency (EQE) of 6.1%, and at 100 cd m-2 for example,
its color coordinates are (0.156, 0.055) with an EQE of 5.8%, the highest among all reported wet-processed deep-blue devices of fluorescent, phosphorescent, and thermally activated delayed fluorescent types. By vapor
deposition, the device shows maximum EQE of 8.0%, and at 100 cd m-2 color coordinates of (0.156, 0.048) with EQE of 6.5%, the highest among all the dry-processed counterparts. The record high efficiency may be attributed to the emitter having high quantum yield of 86%, low doping concentration
preventing concentration quenching, and a suitable host facilitating an effective host-to-guest energy transfer.
In the second part, we also demonstrate a high efficiency deep-blue OLED using wet-process feasible donor-acceptor-type cyanofluorene acetylene conjugate based emitter, 7-(2-(9,9-dipropyl-9H-fluoren-2-yl)ethynyl)-9,9-dipropyl -9H-fluorene-2-carbonitrile (CFLA-DPA). In the
doped solution-processed OLED device with 4,4’-bis(9H-carbazol-9-yl)biphenyl (CBP) host, the CFLA-DPA shows a maximum efficacy of 5.6 lm W-1, a maximum current efficiency of 5.4 cd A-1, a maximum EQE of 4.4%, and a peak luminance of 4150 cd m-2 with color coordinates of (0.15, 0.11). The resultant power efficiency is highest among all formerly reported solution-processed deep-blue OLED devices. The high efficacy may be attributed to the emitter having bipolar characteristic which may help to
transport the injected carriers and a suitable host facilitating an effective host-to-guest energy transfer.
1. A. Bernanose, M. Comte, P. Vouaux, J. Chim. Phys. 1953, 50, 64.
2. A. Bernanose, P. Vouaux, J. Chim. Phys. 1953, 50, 261.
3. A. Bernanose, J. Chim. Phys. 1955, 52, 396.
4. A. Bernanose, P. Vouaux, J. Chim. Phys. 1955, 52, 509.
5. H. Kallmann, M. Pope, J. Chim. Phys. 1960, 32, 300.
6. H. Kallmann, M. Pope, Nature, 1960, 186, 4718.
7. P. Mark, W. Helfrich, J. Appl. Phys. 1962, 33, 205.
8. M. Pope, H. P. Kallmann, P. Magnante, J. Chem. Phys., 1963, 38,
2042.
9. W. Helfrich and W. Schneider, Phys. Rev. Lett., 1965, 14, 229.
10. C. W. Tang, S. A. Vanslyke, Appl. Phys. Lett., 1987, 51, 913.
11. J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R.
Friend, P. Burns, A. Holmes, Nature, 1990, 347, 539.
12. J. Kido, K. Hongawa, K. Okuyama and K. Nagai, Appl. Phys. Lett.,
1994, 64, 815.
13. J. Kido, M. Kimura, and K. Nagai, Science, 1995, 267, 1332.
14. D. Y. Kondakov, J. Appl. Phys., 2007, 102, 114504.
15. A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki,
C. Adachi, Appl. Phys. Lett., 2011, 98, 083302.
16. T. Nakagawa, S.-Y. Ku, K.-T. Wong and C. Adachi, Chem.
Commun., 2012, 48, 9580.
17. G. Me´hes, H. Nomura, Q. Zhang, T. Nakagawa and C. Adachi,
Angew. Chem., Int. Ed., 2012, 51, 11311.
18. H. Tanaka, K. Shizu, H. Miyazaki and C. Adachi, Chem. Commun.,
2012, 48, 11392.
19. Q. Zhang, J. Li, K. Shizu, S. Huang, S. Hirata, H. Miyazaki, C.
Adachi, J. Am. Chem. Soc., 2012, 134, 14706.
20. H. Uoyama, K. Goushi, K. Shizu, H. Nomura and C. Adachi,
Nature, 2012, 492, 234.
21. J. Li, T. Nakagawa, J. MacDonald, Q. Zhang, H. Nomura, H.
Miyazaki and C. Adachi, Adv. Mater., 2013, 25, 3319.
22. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M.
E. Thompson, S. R. Forrest, Nature, 1998, 395, 151.
23. C. Adachi, M. A. Baldo, S. R. Forrest, M. E. Thompson, Appl. Phys.
Lett., 2000, 77, 904.
24. C. Adachi, M. A. Baldo, M. E. Thompson, S. R. Forrest, J. Appl.
Phys., 2001, 90, 5048.
25. W.-Y. Wong, C.-L. Ho, Coord. Chem. Rev. 2009, 253, 1709.
26. M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, and Y. Taga, Appl.
Phys. Lett., 2001, 79, 156.
27. V. I. Adamovich, S. R. Cordero, P. I. Djurovich, A. Tamayo, M. E.
Thompson, B. W. D'Andrade, S. R. Forrest, Org. Electron., 2003, 4,
77.
28. D. F. O'Brien, M. A. Baldo, M. E. Thompson, and S. R. Forrest,
Appl. Phys. Lett., 1999, 74, 442.
29. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B.
Lüssem, Karl Leo, Nature, 2009, 459, 234.
30. http://panasonic.co.jp/corp/news/official.data/data.dir/2013/05/en
1305246/en130524- 6.html.
31. J. H. Jou, S. Kumar, Y. C. Jou, “Disruptive characteristics and
lifetime issues of organic light emitting diodes,” in Organic lightemitting
diodes(OLEDs): materials, devices and applications, 1st ed.
Cambridge, U.K.: Woodhead Publishing Ltd. 2012, ch. 14, sec.14.2,
pp. 410-442.
32. a) A. Poor, Display week 2014 review: OLEDs, SID2014,
Information Displays, 5, 14, 10.; b) http://www.ultimoprezzo
.com/blog/wp-content/uploads/2014/10/Samsung-Galaxy-Tab-S-8.
4-LTE.jpg, c) http://www.phonearena.com/image.php?m=Review
s.Images&f=name&id=149180&pop up=1.
33. S. Sechrist, TVs, 3D, and holograms at display week 2014,
SID2014, Information Displays, 5, 14, 14.
34.http://rdcdlimited.com/~gogreen/index.php?option=com_content&
view=article&id=54&Itemid=78. (U.S. Department of Energy).
35. http://oled.beleuchtung-mit-led.de/osram-orbeos-oled.panel.http://
www.gole m.de/ 1011/79187. html.
36. http://www.acuitybrands.com/oled/why-oled.
37. http://www.alkilu.com/
38. J. H. Jou, C. Y. Hsieh, J. R. Tseng, S. H. Peng, Y. C. Jou, J. H.
Hong, S. M. Shen, M. C. Tang, P. C. Chen, C. H. Lin, Adv. Funct.
Mater., 2013, 23, 2750.
39. J. H. Jou, C. Y. Hsieh, P. W. Chen, S. Kumar, J. H. Hong, J. Photon.
Energy, 2014, 4, 043598.
40. http://www.oledinfo.com/ companies/oled-lighting
41. http://www.companiesandmarkets.com/Market/InformationTechn
ology/MarketResearch/ OLED-Displays-and-Lighting-Market-to-
2020 Technological-Innovations-Lead-to-Cost-Efficient-Productsand-
New Aesthetics/RPT98 8924.
42. A. Dodabalapur, Sol. Stat. Comm., 1997, 102, 259.
43. T. D. Schmidt, Photophysics of organic light-emitting diodes:
Device efficiency and degradation processes, PhD thesis, University
of Augsburg, 2013.
44. J. Frankel, Physical Review, 1931, 37, 17.
45. M. Schwoerer and H. Wolf, Organic Molecular Solids, Wiley-
VCH, Berlin, 2006.
46. a) J. Shinar and V. Savvateev, in “Organic light-emitting devices-A
survey”, edited by J. Shinar, Springer-Verlag New York Inc., NewYork, 2004.; b) E. L. Murphy, G. H. Good, Physical Review, 1956,
102, 1464.
47. A. Rakurthi, Improvement of efficiencies and lifetimes of white
light-emitting organic diodes using a novel co-evaporated ‘holeconfining’
structure, Master Thesis, University of Cincinnati, 2010.
48. S. M. Sze, “Physics of semiconductor devices”, Wiley, New York,
1981.
49. Y. Kim and C.-S. Ha, “Advances in organic light-emitting device”,
Trans Tech Publications Ltd., Switzerland/UK/USA, 2008.
50. M. Pope and C. E. Swenberg, “Electronic processes in organic
crystals”, 1st edition, Clarendon Press, Oxford, 1982.
51. C. A. Parker, Photoluminescence of Solutions, Elsevier,
Amsterdam, 1968.
52. B. Valeur, Molecular Fluorescence: Principles and Applications,
Wiley-VCH. Weinheim, 2002.
53. S. Kalinin, M. Speckbacher, H. Langhals, L. B.-Å. Johansson, Phys.
Chem. Chem. Phys., 2001, 3, 172.
54. H. Langhals, J. Karolin, L. B.-Å. Johansson, J. Chem. Soc. Faraday
Trans., 1998, 94, 2919.
55. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N.
Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Brédas,
M. Lögdlund, W. R. Salaneck, Nature, 1999, 397, 121.
56. M. A. Baldo and S. R. Forrest, Phys. Rev. B, 2000, 62, 10958.
57. N. J. Turro, Modern Molecular Photochemistry, Benjamin Inc.,
Menlo Park, 1978.
58. D. Y. Kondakov, T. D. Pawlik, T. K. Hatwar, J. P. Spindler, J. Appl.
Phys., 2009, 106, 124510.
59. S. M. King, M. Cass, M. Pintani, C. Coward, F. B. Dias, A. P.
Monkman, M. Roberts, J. Appl. Phys., 2011, 109, 074502.
60. H. Fukagawa, T. Shimizu, N. Ohbe, S. Tokito, K. Tokumaru, H.
Fujikake, Org. Electron., 2012, 13, 1197.
61. C. A. Parker, C. G. Hatchard, Trans. Faraday Soc., 1961, 57, 1894.
62. M. Cocchi, D. Virgili, G. Giro, V. Fattori, P. D. Marco, Appl. Phys.
Lett., 2002, 80, 2401.
63. N. Matsumoto, M. Nishiyama, C. Adachi, J. Phys. Chem., 2008,
112, 7735.
64. V. Jankus, C. J. Chiang, F. Dias, A. P. Monkman, Adv. Mater.,
2013, 25, 1455.
65. Y. Cao, I. D. Parker, G. Yu, C. Zhang, A. J. Heeger, Nature, 1999,
397, 414.
66. C.-G. Zhen, Z.-K. Chen, Q.-D. Liu, Y.-F. Dai, R.-YC Shin, S.-Y.
Chang, J. Kieffer, Adv. Mater., 2009, 21, 2425.
67. S. W. Yin, L. P. Chen, P. F. Xuan, K. Q. Chen, Z. Shuai, J. Phys.
Chem. B, 2004, 108, 9608.
68. M. T. Sun, P. Kjellberg, W. J. D. Beenken, T. Pullerits, Chem.
Phys., 2006, 327, 474.
69. P. Andrew, W. L. Barnes, Science, 2000, 290, 785.
70. T. Förster, Discuss Faraday Soc., 1959, 27, 7.
71. D. L. Dexter, J. Chem. Phys., 1953, 21, 836.
72. Y. Tao, C. Yang, J. Qin, Chem. Soc. Rev., 2011, 40, 2943.
73. D. Tanaka, Y. Agata, T. Takeda, S. Watanabe, J. Kido, Jpn. J. Appl.
Phys., 2007, Part 2, 46, L117.
74. J. S. Chen, C. S. Shi, Q. Fu, F. C. Zhao, Y. Hu, Y. L. Feng, and D.
G. Ma, J. Mater. Chem., 2012, 22, 5164.
75. T.-W. Lee, T. Noh, H.-W. Shin, O. Kwon, J.-J. Park, B.-K. Choi,
M.-S. Kim, D. W. Shin, Y.-R. Kim, Adv. Mater., 2009, 19, 1625.
76. J.-H. Jou, M.-F. Hsu, W.-B. Wang, C.-L. Chin, Y.-C. Chung, C.-T.
Chen, J.-J. Shyue, S.-M. Shen, M.-H. Wu, W.-C. Chang, C.-P. Liu,
S.-Z. Chen, H.-Y. Chen, Chem. Mater., 2009, 21, 2565.
77. J.-H. Jou, C.-J. Li, S.-M. Shen, S.-H. Peng, Y.-L. Chen, Y.-C. Jou,
J. H. Hong, C.-L. Chin, J.-J. Shyue, S.-P. Chen, J.-Y. Li, P.-H.
Wang, C.-C. Chen, J. Mater. Chem. C, 2013, 1, 4201.
78. J.-H. Jou, Y.-M. Yang, S.-Z. Chen, J.-R. Tseng, S.-H. Peng, C.-Y.
Hsieh, Y.-X. Lin, C.- L. Chin, J.-J. Shyue, S.-S. Sun, C.-T. Chen,
C.-W. Wang, C.-C. Chen, S.-H. Lai, F.-C. Tung, Adv. Opt. Mater.,
2013, 1, 1657.
79. J. H. Jou, S. Kumar, D. Tavgeniene, C. C. An, P. H. Fang, E.
Zaleckas, J. V. Grazulevicius, S. Grigalevicius, J. Mater. Chem. C,
2014, 2, 8707.
80. A. Köhnen, N. Riegel, J. H.-W. M. Kremer, H. Lademann, D. C.
Müller, K. Meerholz, Adv. Mater., 2009, 21, 879.
81. T. Baumann, B. Rudat, Manufacturing of OLEDs-challenges and
solutions, Dipl. Chem. Daniel Volz | 222908587.
82. S. Reineke, K. Walzer, K. Leo, Phys. Rev. B: Condens. Matter
Mater. Phys., 2007, 75, 125328.
83. M. A. Baldo, C. Adachi, S. R. Forrest, Phys. Rev. B: Condens.
Matter, 2000, 62, 10967.
84. I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, Appl. Phys.
Lett., 1993, 62, 131.
85. I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, A. Scherer,
Appl. Phys. Lett., 1993, 63, 2174.
86. S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, E. F. Schubert,
Phys. Rev. Lett., 1997, 78, 3294.
87. R. Windisch, P. Heremans, A. Knobloch, P. Kiesel, G. H. Dohler,
B. Dutta, G. Borghs, Appl. Phys. Lett., 1999, 74, 2256.
88. M. Fujita, T. Ueno, S. Noda, H. Ohhata, T. Tsuji, H. Nakada, N.
Shimoji, Electronics Lett., 2003, 39, 1750.
89. Y. Sun and S. R. Forrest, Nature Photon., 2008, 2, 483.
90. W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T.
Toyooka, H. Takezoe, Nature Photon., 2010, 4, 222.
91. Y. J. Lee, S. H. Kim, J. Huh, G. H. Kim, Appl. Phys. Lett., 2003,
82, 3779.
92. K. Saxena, D. S. Mehta, V. K. Rai, R. Srivastava, G. Chauhan, and
M. N. Kamalasanan, J. of Luminescence, 2008, 128, 525.
93. T. Bocksrocker, J. Hoffmann, C. Eschenbaum, A. Pargner, J.
Preinfalk, F. M. Flaig, U. Lemmer, Org. Electron., 2013, 14, 396.
94. S. Wedge, J. A. E. Wasey, W. L. Barnes, Appl. Phys. Lett., 2004,
85, 182.
95. R. Meerheim, R. Nitsche, K. Leo, Appl. Phys. Lett., 2008, 93,
043310.
96. a) S. Möller, S. R. Forrest, J. Appl. Phys., 2002, 91, 3324.; b) J.-S.
Kim, P. K. H. Ho, N. C. Greenham, R. H. Friend, J. Appl. Phys.,
2000, 88, 1073.; c) D. Yokoyama, A. Sakaguchi, M. Suzuki, C.
Adachi, Organ. Electron., 2009, 10 127.
97. M. G. Colombo, T. C. Brunold, T. Reidener, H. U. Güdel, M.
Förtsch, H. Bürgi, Inorg. Chem. 1994, 33, 545.
98. T.-W. Kuo, H.-P. Chung and T.-M. Chen, Chem. Lett., 2010, 39,
200.
99. T. Sudyoadsuk, P. Moonsin, N. Prachumrak, S. Namuangruk, S.
Jungsuttiwong, T. Keawin, V. Promarak, Polym. Chem., 2014, 5,
3982.
100. F. Ma, X. Liu, C. Zhang, H. Li, L. Wang, Jpn. J. Appl. Phys.,
2006, 45, 9224.
101. Y. H. Kim, D. C. Shin, S. H. Kim, C. H. Ko, H. S. Yu, Y. S. Chae,
S. K. Kwon, Adv. Mater., 2001, 13, 1690.
102. J. H. Jou, Y. P. Lin, M. F. Hsu, M. H. Wu, P. Lu, Appl. Phys.
Lett., 2008, 92, 193314.
103. L. S. Hung, C. H. Chen, Mat. Sci. Eng.-R, 2002, 39, 143.
104. Publication report from Web of Science on December 16th 2014
for the search of key word: ‘‘Blue organic light emitting diodes’’.
105. Y.-H. Kim, H.-C. Jeong, S.-H. Kim, K. Yang, S.-K. Kwon, Adv.
Funct. Mater., 2005, 15, 1799.
106. Y.-H. Niu, B. Chen, T.-D. Kim, M.S. Liu, A.K.-Y. Jen, Appl.
Phys. Lett., 2004, 85, 5433.
107. Z.Q. Gao, Z.H. Li, P.F. Xia, M.S. Wong, K.W. Cheah, C.H.
Chen, Adv. Funct. Mater., 2007, 17, 3194.
108. S. Tang, M.R. Liu, P. Lu, H. Xia, M. Li, Z.Q. Xie, F.Z. Shen, C.
Gu, H.P. Wang, B. Yang, Y. Ma, Adv. Funct. Mater., 2007, 17,
2869.
109. T.-C. Tsai, W.-Y. Hung, L.-C. Chi, K.-S. Wong, C.-C. Hsieh, P.-
T. Chou, Org. Electron., 2009, 10, 158.
110. Y.-H. Lee, T.-C. Wu, C.-W. Liaw, T.-C. Wen, T.-F. Guo, Y.-T.
Wu, J. Mater. Chem., 2012, 22, 11032.
111. C. H. Hsiao, C. F. Lin, J. H. Lee, J. Appl. Phys., 2007, 102,
094508.
112. J. Morovič, Color gamut mapping, Wiley InterScience, John
Wiley & Sons, Ltd., 2008.
113. W.-T. Liu, W.-Y. Huang, Opt. Eng., 2012, 51, 104001-1.
114. B.W. D’Andrade, S. R. Forrest, Adv. Mater., 2004, 16, 1585.
115. D. Travis, Effective Color Displays: Theory and Practice.,
Academic Press, London, 1991.
116. J.-H. Jou, Y.-L. Chen, J.-R. Tseng, R.-Z. Wu, J.-J. Shyue, K. R.
J. Thomas, N. Kapoor, C.-T. Chen, Y.-P. Lin, P.-H. Wang, H.-W.
Hung, J.-Y. Li, and S.-P. Chen, J. Mater. Chem., 2012, 22, 15500.
117. L.-H. Chan, H.-C. Yeh, C.-T. Chen, Adv. Mater., 2001, 13, 1637.
118. H.-T. Shih, C.-H. Lin, H.-H. Shih, C.-H. Cheng, Adv. Mater.,
2002, 14, 1409.
119. Y.-H. Kim, H.-C. Jeong, S.-H. Kim, K. Yang, S.-K. Kwon, Adv.
Funct. Mater., 2005, 15, 1799.
120. K. Wang, F. Zhao, C. Wang, S. Chen, D. Chen, H. Zhang, Y. Liu,
D. Ma, Y. Wang, Adv. Funct. Mater., 2013, 23, 2672.
121. B. Wei, J.-Z. Liu, Y. Zhang, J.-H. Zhang, H.-N. Peng, H.-L. Fan,
Y.-B. He, X.-C. Gao, Adv. Funct. Mater., 2010, 20, 2448.
122. C. W. Lee, J. Y. Lee, Adv. Mater., 2013, 25, 5450.
123. S. J. Su, E. Gonmori, H. Sasabe, J. Kido, Adv. Mater., 2008, 20,
4189.
124. N. Chopra, J. Lee, Y. Zheng, S.-H. Eom, J. Xue, F. So, ACS Appl.
Mater. & Inter., 2009, 1, 1169.
125. J.-H. Jou, W.-B. Wang, S.-M. Shen, S. Kumar, I-M. Lai, J.-J.
Shyue, S. Lengvinaite, R. Zostautiene, J. V. Grazulevicius, S.
Grigalevicius, S.-Z. Chen, C.-C. Wu, J. Mater. Chem., 2011, 21,
9546.
126. J. H. Jou, W. B. Wang, M. F. Hsu, J. J. Shyue, C. H. Chiu, I. M.
Lai, S. Z. Chen, P. S. Wu, C. C. Chen, C. P. Liu and S. M. Shen,
ACS Nano, 2010, 4, 4054.
127. T. Serevičius, T. Nakagawa, M.-C. Kuo, S.-H. Cheng, K.-T.
Wong, C.-H. Chang, R. C. Kwong, S. Xia, C. Adachi, Phys. Chem.
Chem. Phys., 2013, 15, 15850.
128. S. Wu, M. Aonuma, Q. Zhang, S. Huang, T. Nakaqawa, K.
Kuwabara, C. Adachi, J. Mater. Chem., C 2014, 2, 421.
129. X.-L. Chen, R. Yu, Q.-K. Zhang, L.-J. Zhou, X.-Y. Wu, Q.
Zhang, C.-Z. Lu, Chem. Mater., 2013, 25, 3910.
130. Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, C. Adachi,
Nature Photon., 2014, 8, 326.
131. H. Nakanotani, T. Higuchi, T. Furukawa, K. Masui, K.
Morimoto, M. Numata, H. Tanaka, Y. Sagara, T. Yasuda, C. Adachi,
Nat. Commun., 2014, 5:4016 doi: 10.1038/ncomms5016.
132. J. L. Segura, Acta Polym., 1998, 49, 319.
133. K. Okumoto, Y. Shirota, Chem. Mater., 2003, 15, 699.
134. C. C. Wu, Y. T. Lin, K. T. Wong, R. T. Chen, Y. Y. Chien, Adv.
Mater., 2004, 16, 61.
135. K. T. Wong, R. T. Chen, F. C. Fang, C. C. Wu, Y. T. Lin, Org.
Lett., 2005, 7, 1979.
136. J. Y. Shen, C. Y. Lee, T. H. Huang, J. T. Lin, Y. T. Tao, C. H.
Chien, C. Tsai, J. Mater. Chem., 2005, 15, 2455.
137. H. Tokailin, H. Higashi, C. Hosokawa, and T. Kusumoto, Proc.
SPIE, 1993, 1910, 38.
138. C. Hosokawa, H. Higashi, H. Nakamura, T. Kusumoto, Appl.
Phys. Lett. 1995, 67, 3853.
139. M. T. Lee, H. H. Chen, C. H. Liao, C. H. Tsai, and C. H. Chen,
Appl. Phys. Lett., 2004, 85, 3301.
140. C. W. Lee, Y. Im, J. A. Seo, Y. Lee, Chem. Commun., 2013, 49,
9860.
141. J.-K. Bin, N.-S. Cho, J.-I. Hong, Adv. Mater., 2012, 24, 2911.
142. S. O. Jeon, S. E. Jang, H. S. Son, J. Y. Lee, Adv. Mater., 2011,
23, 1436.
143. H. Sasabe, J. Takamatsu, T. Motoyama, S. Watanabe, G.
Wagenblast, N. Langer, O. Molt, E. Fuchs, C. Lennartz, J. Kido,
Adv. Mater., 2010, 22, 5003.
144. P. Schrögel, N. Langer , C. Schildknecht, G. Wagenblast, C.
Lennartz, P. Strohriegl, Org. Electron., 2011, 12, 2047.
145. R. J. Holmes, S. R. Forrest, T. Sajoto, A. Tamayo, P. I.
Djurovich, M. E. Thompson, J. Brooks, Y.-J. Tung, B. W.
D’Andrade, M. S. Weaver, R. C. Kwong, J. J. Brown, Appl. Phys.
Lett., 2005, 87, 243507.
146. K. Udagawa , H. Sasabe , C. Cai , J. Kido, Adv. Mater., 2014,
DOI: 10.1002/adma.201401621.
147. K.-R. Wee, A.-L. Kim, S.-Y. Jeong, S. Kwon, S. O. Kang, Org.
Electron., 2011, 12, 1973.
148. K. S. Yook, J. Y. Lee, J. Mater. Chem., 2012, 22, 14546.
149. F. Zhang, L. Duan, J. Qiao, G. Dong, L. Wang, Y. Qiu, Org.
Electron., 2012, 13, 1277.
150. X. Zhang, C. Jiang, Y. Mo, Y. Xu, H. Shi, Y. Cao, Appl. Phys.
Lett., 2006, 88, 051116.
151. C. Schildknecht, G. Ginev, A. Kammoun, T. Riedl, W.
Kowalsky, H.-H. Johannes, C. Lennartz, K. Kahle, M. Egen, T.Geßner, M. Bold, S. Nord, P. Erk, Proc. of SPIE, 2005, 5937
59370E-1.
152. J. Lee, J.-I. Lee, J.-W. Lee, H. Y. Chu, Org. Electron., 2010, 11,
1159.
153. S.-J. Yeh, M.-F. Wu, C.-T. Chen, Y.-H. Song, Y. Chi, M.-H. Ho,
S.-F. Hsu, C.-H. Chen, Adv. Mater., 2005, 17, 285.
154. S. O. Jeon, K. S. Yook, C. W. Joo, J. Y. Lee, Adv. Funct. Mater.,
2009, 19, 3644.
155. S. Tao, S. L. Lai, C. Wu, T. W. Ng, M. Y. Chan, W. Zhao, X.
Zhang, Org. Electron., 2011, 12, 2061.
156. S. J. Lee, K.-M. Park, K. Yang, Y. Kang, Inorg. Chem., 2009, 48,
1030.
157. C. Wu, S. Tao, M. Chen, F.-L. Wong, Q. Yang, H.-W. Mo,
W. Zhao, C.-S. Lee, Dyes and Pigments, 2013, 96, 237
158. H.-F. Chen, L.-C. Chi, W.-Y. Hung, W.-J. Chen, T.-Y. Hwu, Y.-
H. Chen, S.-H. Chou, E. Mondal, Y.-H. Liu, K.-T. Wong, Org.
Electron., 2012, 13, 2671.
159. C.-H. Hsieh, F.-I. Wu, C.-H. Fan, M.-J. Huang, K.-Y. Lu, P.-Y.
Chou, Y.-H. Ou Yang, S.-H. Wu, I-C. Chen, S.-H. Chou, K.-T.Wong, C.-H. Cheng, Chem. Eur. J., 2011, 17, 9180.
160. K.-Y. Lu, H.-H. Chou, C.-H. Hsieh, Y-H. O. Yang, H.-R. Tsai,
H.-Y. Tsai, L.-C. Hsu, C.-Y. Chen, I-C. Chen, C.-H. Cheng, Adv.
Mater., 2011, 23, 4933.
161. Y.-C. Chiu, J.-Y. Hung, Y. Chi, C.-C. Chen, C.-H. Chang, C.-C.
Wu, Y.-M. Cheng, Y.-C. Yu, G.-H. Lee, P.-T. Chou, Adv. Mater.,
2009, 21, 2221.
162. S. Lee, S.-O. Kim, H. Shin, H.-J. Yun, K.l Yang, S.-K. Kwon, J.-
J. Kim, Y.-H. Kim, J. Am. Chem. Soc., 2013, 135, 14321.
163. F. Kessler, Y. Watanabe, H. Sasabe, H. Katagiri, M. K.
Nazeeruddin, M. Grӓtzel, J. Kido, J. Mater. Chem. C, 2013, 1, 1070.
164. J. Zhuang, W. Li, W. Su, Y. Liu, Q. Shen, L. Liao, M. Zhou, Org.
Electron., 2013, 14, 2596.
165. Y. Zhang, J. Lee, S. R. Forrest, Nat. Commun., 2014, DOI:
10.1038/ncomms6008.
166. J.-B. Kim, S.-H. Han, K. Yang, S.-K. Kwon, J.-J. Kim, Y.-H.
Kim, Chem. Commun., 2014, DOI: 10.1039/c4cc07768g.
167. J.-H. Lee, G. Sarada, C.-K. Moon, W. Cho, K.-H. Kim, Y. G.
Park, J. Y. Lee, S.-H. Jin, J.-J. Kim, Adv. Optical Mater. 2014, DOI:
10.1002/adom.201400350.
168. X.-L. Chen, R. Yu, Q.-K. Zhang, L.-J. Zhou, X.-Y. Wu, Q. Zhang,
C.-Z. Lu, Chem. Mater., 2013, 25, 3910.
169. S. Hirata, Y. Sakai, K. Masui, H. Tanaka, S. Y. Lee, H. Nomura,
N. Nakamura, M. Yasumtsu, H. Nakanotani, Q. Zhang, K. Shizu, H.
Miyazaki, C. Adachi, Nature Mater., 2014, DOI:
10.1038/NMAT4154.
170. M. Zhu, C. Yang, Chem. Soc. Rev., 2013, 42, 4963.
171. R. E. Martin, F. Diederich, Angew Chem Int Ed., 1999, 38, 1350.
172. T. M. Figueira-Duarte, K. Müllen, Chem. Rev., 2011, 111, 7260.
173. K. L. Chan, J. P. F. Lim, X. Yang, A. Dodabalapur, G. E.
Jabbour, A. Sellinger, Chem. Commun., 2012, 48, 5106.
174. X. Feng, J. Y. Hu, L. Yi, N. Seto, Z. Tao, C. Redshaw, M. R. J.
Elsegood, T. Yamato, Chem. Asian J., 2012, 7, 2854.
175. A. Thangthong, N. Prachumrak, R. Tarsang, T. Keawin, S.
Jungsuttiwong, T. Sudyoadsuk, V. Promarak, J. Mater. Chem.,
2012, 22, 6869.
176. S.-K. Kim, B. Yang, Y. Ma, J.-H. Lee, J.-W. Park, J. Mater.
Chem., 2008, 18, 3376.
177. C.-H. Chien, C.-K. Chen, F.-M. Hsu, C.-F. Shu, P.-T. Chou, C.-
H. Lai, Adv. Funct. Mater., 2009, 19, 560.
178. J.-Y. Hu, Y.-J. Pu, F. Satoh, S. Kawata, H. Katagiri, H. Sasabe,
J. Kido, Adv. Funct. Mater., 2014, 24, 2064.
179. R. Kim, S. Lee, K.-H. Kim, Y.-J. Lee, S.-K. Kwon, J.-J. Kim, Y.-
H. Kim, Chem. Commun., 2013, 49, 4664.
180. S. Setayesh, A. C. Grimsdale, T. Weil, V. Enkelmann, K. Müllen,
F. Meghdadi, E. J. W. List, G. Leising, J. Am. Chem. Soc., 2001,
123, 946.
181. S. H. Lee, T. Nakamura, T. Sutsui, Org. Lett., 2001, 3, 2005.
182. N. Matsumoto, T. Miyazaki, M. Nishiyama, C. Adachi, J. Phys.
Chem. C, 2009, 113, 6261.
183. J. B. Birks, Photophysics of Aromatic Molecules. Wiley-
Interscience, New York, 1970.
184. Q. B. Pei, Y. Yang, J. Am. Chem. Soc., 1996, 118, 7416.
185. (a) D. Neher, Macromol Rapid Commun, 2001, 22, 1365. and (b)
U. Scherf, E.J.W. List, Adv Mater., 2002, 14, 477.
186. A. Charas, J. Morgado, J. M. Martinho, A. Fedorov, L. Alcecer,
F. Cacialli, J. Mater. Chem., 2002, 12, 3523.
187. G. Heliotis, P. N. Stavrinou, D. C. C. Bradley, E. Gu, C. Griffin,
C. W. Jeon, M. D. Dawson, Appl. Phys. Lett., 2005, 87, 103505.
188. A. Charas, H. Alves, L. Alcacer, and J. Morgado, Appl. Phys.
Lett., 2006, 89, 143519.
189. I. O. Huyal, U. Koldemir, T. Ozel, H. V. Demir, and D. Tuncel,
J. Mater. Chem., 2008, 18, 3568.
190. T. V. Woudenbergh, J. Wildeman, P. W. M. Blom, J. J. A. M.
Bastiaansen, B. M. W. Langeveld-Voss, Adv. Funct. Mater., 2004,
14, 677.
191. S. W. Culligan, Y. Geng, S. H. Chen, K. Klubek, K. M. Vaeth,
C. W. Tang, Adv. Mater., 2003, 15, 1176.
192. H. Yan, Q. Huang, J. Cui, J. G. C. Veinot, M. M. Kern, T. J.
Marks, Adv. Mater., 2003, 15, 835.
193. M. C. Suh, B. D. Chin, M. Kim, T. M. Kang, S. T. Lee, Adv.
Mater., 2003, 15, 1254.
194. S. Lo, G. J. Fichards, J. P. J. Markham, E. B. Namdas, S. Sharma,
P. L. Burn, I. D. W. Samuel, Adv. Funct. Mater., 2005, 15, 1451.
195. H. Lu, C. Liu, C. Chang, S. Chen, Adv. Mater., 2007,19, 2574.
196. J. Liu, J. H. Zou, W. Yang, H. B. Wu, C. Li, B. Zhang, J. B. Peng,
Y. Cao, Chem. Mater., 2008, 20, 4499.
197. M. Kreyenschmidt, G. Klaerner, T. Fuhrer, J. Ashenhurst, S.
Karg, W. D. Chen, V. Y. Lee, J. C. Scott, R. D. Miller,
Macromolecules, 1998, 31, 1099.
198. A. W. Grice, D. D. C. Bradley, M. T. Bernius, M. Inbasekaran,
W. W. Wu, E. P. Woo, Appl. Phys. Lett., 1998, 73, 629.
199. F. Huang , Y. Zhang, M. S. Liu, Y. J. Cheng, A. K. Y. Jen, Adv.
Funct. Mater., 2007, 17, 3808.
200. Q. Zhao, S. J. Liu, W. Huang, Macromol. Chem. Phys., 2009,
210, 1580.
201. M.-C. Hung, J. L. Liao, S. A. Chen, S. H. Chen, A. C. Su, J. Am.
Chem. Soc., 2005, 127, 14576.
202. U. Lemmer, S. Heun, R. F. Mahrt, U. Scherf, M. Hopemeier, U.
Siegner, E. O. Göbel, K. Müllen, H. Bӓssler, Chem. Phy. Lett., 1995,
240, 374.
203. S. A. Jenekhe, J. A. Osaheni, Science, 1994, 265, 765.
204. G. Klӓner, M. H. Davey, W. D. Chen, J. C. Scott, R. D. Miller,
Adv. Mater., 1998, 10, 993.
205. J. Teetsov, M. A. Fox, J. Mater. Chem., 1999, 9, 2117.
206. E. J. W. List, R. Guentner, P. S. De Freitas, U. Scherf, Adv.
Mater., 2002, 14, 374.
207. L. Romaner, A. Pogantsch, P. S. De Freitas, U. Scherf, Adv.
Funct. Mater., 2003, 13, 597.
208. Q. Peng, J. B. Peng, E. T. Kang, K. G. Neoh, Y. Cao,
Macromolecules, 2005, 38, 7292.
209. F. Montilla, R. Mallavia, Adv. Funct. Mater., 2007, 17, 71.
210. M. Sims, D. D. C. Bradley, A. Ariusimakis, M. Grell, D. G.
Lidzey, Adv. Funct. Mater., 2004, 14, 765.
211. S. Y. Cho, A. C. Grimsdale, D. J. Jones, S. E. Watkins, A. B.
Holmes, J. Am. Chem. Soc., 2007, 129, 11910.
212. Z. H. Li, M. S. Wong, Y. Tao, J. P. Lu, Chem. Eur. J., 2005, 11,
3285.
213. Z. H. Li, M. S. Wong, H. Fukutani, Y. Tao, Chem. Mater., 2005,
17, 5032.
214. C. Ego, A. C. Grimsdale, F. Uckert, G. Yu, G. Srdanov, K.
Müllen, Adv. Mater., 2002, 14, 809.
215. A. Pogantsch, F. P. Wenzl, E. J. W. List, G. Leising, A. C.
Grimsdale, K. Müllen, Adv. Mater., 2002, 14, 1061.
216. D. Marsitzky, R. Vestberg, P. Blainey, B. T. Tang, C. J. Hawker,
K. R. Carter, J. Am. Chem. Soc., 2001, 123, 6965.
217. F.-I. Wu, D. S. Reddy, C.-F. Shu, M. S. Liu, A. K.-Y. Jen, Chem.
Mater., 2003, 15, 269.
218. M. Ranger, M. Leclerc, Macromolecules, 1999, 32, 3306.
219. S. Thayumanavan, S. Barlow, S. R. Marder, Chem. Mater., 1997,
9, 3231.
220. C.-F. Shu, R. Dodda, F.-I. Wu, M. S. Liu, A. K.-Y. Jen,
Macromolecules, 2003, 36, 6698.
221. H. Z. Tang, M. Fujiki, Z. B. Zhang, K. Torimitsu, M. Motonaga,
Chem. Commun., 2001, 23, 2426.
222. C. H. Chou, C. F. Shu, Macromolecules, 2002, 35, 9673.
223. Y. Geng, S. W. Culligan, A. Trajkovska, J. U. Wallace, S. H.
Chen, Chem. Mater., 2003, 15, 542.
224. X. Gong, P. K. Iyer, D. Moses, G. C. Bazan, A. J. Heeger, S. S.
Xiao, Adv. Funct. Mater., 2003, 13, 325.
225. M. Gaal, E. J. List, U. Scherf, Macromolecules, 2003, 36, 4236.
226. W.-Y. Lai, R. Zhu, Q.-L. Fan, L.-T. Hou, Y. Cao, W. Huang,
Macromolecules, 2006, 39, 3707.
227. Q. D. Liu, J. Lu, J. Ding, M. Day, Y. Tao, P. Barrios, J. Stupak,
K. Chan, J. Li, Y. Chi, Adv. Funct. Mater., 2007, 17, 1028.
228. W. Y. Lai, Q. Y. He, R. Zhu, Q. Q. Chen, W. Huang, Adv. Funct.
Mater., 2008, 18, 265.
229. F. Liu, W.-Y. Lai, C. Tang, H.-B. Wu, Q.-Q. Chen, B. Peng, W.
Wei, W. Huang, Y. Cao, Macromol. Rapid Commun., 2008, 29, 659.
230. W.-Y. Lai, R. Xia, Q.-Y. He, P. A. Levermore, W. Huang, D. D.
C. Bradley, Adv. Mater., 2009, 21, 355.
231. A. L. Kanibolotsky, I. F. Perepichka, P. J. Skabara, Chem. Soc.
Rev., 2010, 39, 2695.
232. W.-Y. Lai, R. Xia, D. D. C. Bradley, W. Huang, Chem. Eur. J.,
2010, 16, 8471.
233. H. Huang, Q. Fu, S. Zhuang, Y. Liu, L. Wang, J. Chen, D. Ma,
C. Yang, J. Phys. Chem. C, 2011, 115, 4872.
234. Y. Zou, J. Zou, T. Ye, H. Li, C. Yang, H. Wu, D. Ma, J. Qin, Y.
Cao, Adv. Funct. Mater., 2013, 23, 1781.
235. C. Liu, Y. Li, Y. Zhang, C. Yang, H. Wu, J. Qin, Y. Cao, Chem.
Eur. J. , 2012, 18, 6928.
236. A. L. Kanibolotsky, R. Brridge, P. J. Skabara, I. F. Perepichka,
D.D.C. Bradley, M. Koeberg, J. Am. Chem. Soc., 2004, 126, 13695.
237. W. Y. Lai, R. Xia, D. D. C. Bradley, W. Huang, Chem. Eur. J.,
2010, 16, 8471.
238. W. Y. Lai, Q. Q. Chen, Q. Y. He, Q. L. Fan, W. Huang, Chem.
Commun., 2006, 1959.
239. J. S. Yang, Y. R. Lee, J. L. Yan, M. C. Lu, Org. Lett., 2006, 8,
5813.
240. D. Katsis, Y. H. Geng, J. J. Ou, S. W. Culligan, A. Trakovska, S.
H. Chen, L. J. Rothberg, Chem. Mater., 2002, 14, 1332.
241. L. Wang, Y. Jiang, J. Luo, Y. Zhou, J. Zhou, J. Wang, J. Pei, Y.
Cao, Adv. Mater., 2009, 21, 4854.
242. C.-G. Zhen, Y.-F. Dai, W.-J. Zeng, Z. Ma, Z.-K. Chen, J. Kieffer,
Adv. Funct. Mater., 2011, 21, 699.
243. T. Li, T. Yamamoto, H.-L. Lan, J. Kido, Polym. Adv. Technol.,
2004, 15, 266.
244. S. L. Tao, Z. K. Peng, X. H. Zhang, P. F. Wang, C. S. Lee, S. T.
Lee, Adv. Funct. Mater., 2005, 15, 1716.
245. R. J. Tseng, R. C. Chiechi, F. Wudl, Y. Yang, Appl. Phys. Lett.,
2006, 88, 093512.
246. S. Tao, Y. Zhou, C.-S. Lee, C. Zhang, S.-T. Lee, Chem. Mater.,
2010, 22, 2138.
247. S. O. Kim, K. H. Lee, G. Y. Kim, J. H. Seo, Y. K. Kim, S. S.
Yoon, Synthetic Metals, 2010, 160, 1259.
248. J.-H. Jou , J.-R. Tseng, K.-Y. Tseng, W.-B. Wang, Y.-C. Jou, S.-
M. Shen, Y.-L. Chen, W.-Y. Hung, S.-Z. Chen, T.-Y. Ding, H.-C.
Wang, Org. Electron., 2012, 13, 2893.
249. G. Jones II, W. R. Jackson, C.-Y. Choi, W. R. Bergmark, J. Phys.
Chem., 1985, 89, 294.
250. C.-H. Chen, J.-T. Lin, M.-C. P. Yeh, Tetrahedron, 2006, 62,
8564.
251. Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B.
Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A.
Montgomery, Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam,
S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G.
Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M.
Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,
Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P.
Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.
Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C.
Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P.
Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D.
Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K.
Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S.
Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P.
Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith,M. A. AlLaham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W.
Gill, B. Johnson,W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople,
Gaussian, Inc., Wallingford CT 2004.
252. A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
253. J. H. Jou, Y. S. Chiu, C. P. Wang, R. Y. Wang and H. C. Hu,
Appl. Phys. Lett., 2006, 88, 193501.
254. J. S. Wilson, A. S. Dhoot, A. J. A. B. Seeley, M. S. Khan, A.
Kohler, R. H. Friend, Nature, 2001, 413, 828.
255. Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, S. R.
Forrest, Nature, 2006, 440, 908.
256. M. A. Baldo, D. F. O’Brien, M. E. Thompson, and S. R. Forrest,
Phys. Rev. B, 1999, 60, 14422.
257. M. Segal, M. A. Baldo, R. J. Holmes, S. R. Forrest, and Z. G.
Soos, Phys. Rev. B, 2003, 68, 075211.
258. Commission International de L’Eclairage (CIE), Calorimetry,
Publication Report No. 15.2, 1986.
259. T. Smith, J. Guild, Trans. Opt. Soc., 1931, 33, 73.
260. C. Liu, Y. Li, Y. Li, C. Yang, H. Wu, J. Qin, Y. Cao, Chem.
Mater., 2013, 25, 3320.
261. D. Kumar, K. R. J. Thomas, C.-C. Lin, J.-H. Jou, Chem. Asian J.,
2013, 8, 2111.
262. V. Bulovic, R. Deshpande, M. E. Thompson, S. R. Forrest, Chem.
Phys. Lett., 1999, 308, 317.
263. V. Bulovic, A. Shustikov, M. A. Baldo, E. Bose, V. G. Kozlov,
M. E. Thompson, S. R. Forrest, Chem. Phys. Lett., 1998, 287, 455.
264. S. J. Lee, J. S. Park, K.-J. Yoon, Y.-I. Kim, S.-H. Jin, S. K. Kang,
Y.-S. Gal, S. Kang, J. Y. Lee, J.-W. Kang, S.-H. Lee, H.-D. Park, J.-
J. Kim, Adv. Funct. Mater., 2008, 18, 3922.
265. T. Peng, K. Ye, Y. Liu, L. Wang, Y. Wu, Y. Wang, Org.
Electron., 2011, 12, 1914.
266. B. A. Kamino, Y.-L. Chang, Z.-H. Lu, and T. P. Bender, Org.
Electron., 2012, 13, 1479.
267. S. Jeong, M.-K. Kim, S. H. Kim, J.-I. Hong, Org. Electron.,
2013, 14, 2497.
268. Y. Yu, Z. Wu, Z. Li, B. Jiao, L. Li, L. Ma, D. Wang, G. Zhou, X.
Hou, J. Mater. Chem., 2013, 1, 8117.
269. K. E. Linton, A. L. Fisher, C. Pearson, M. A. Fox, L. O. Palsson,
M. R. Bryce, M. C. Petty, J. Mater. Chem., 2012, 22, 11816.
270. G. Liaptsis, K. Meerholz, Adv. Funct. Mater., 2013, 23, 359.
271. Y. H. Niu, M. S. Liu, J. W. Ka, J. Bardeker, M. T. Zin, R.
Schofield, Y. Chi, A. K. Y. Jen, Adv. Mater., 2007, 19, 300.
272. D. Y. Kondakov, J. Appl. Phys., 2008, 104, 084520.
273. D. Y. Kondakov, W. C. Lenhart, W. F. Nichols, J. Appl. Phys.,
2007, 101, 024512.
274. H. Becker, H. Vestweber, A. Gerhard, P. Stoessel, H. Heil, and
R. Fortte, SID Int. Symp. Digest Tech. Papers, 2005, 36, 1062.
275. S. H. Kim, J. Jang, J. Y. Lee, Appl. Phys. Lett., 2007, 90, 203511.
276. S.-Y. Yu, J.-H. Chang, P.-S. Wang, C.-I Wu, Y.-T. Tao,
Langmuir, 2014, 30, 7369.
277. M. Zhang, S. Xue, W. Dong, Q. Wang, T. Fei, C. Gua, Y.
Ma, Chem. Commun., 2010, 46, 3923.
278. M. Zhu, T. Ye, C.-G. Li, X. Cao, C. Zhong, D. Ma, J. Qin, C.
Yang J. Phys. Chem. C, 2011, 115, 17965.
279. I. Cho, S. H. Kim, J. H. Kim, S. Park, S. Y. Park, J. Mater. Chem.,
2012, 22, 123.
280. C. Liu, Y. Gu, Q. Fu, N. Sun, C. Zhong, D. Ma, J. Qin, C. Yang,
Chem. Eur. J., 2012, 18, 13828.
281. E.-S. Hellerich, J. J. Intemann, M. Cai, R. Liu, M. D. Ewan, B.
C. Tlach, M. Jeffries-EL, R. Shinar, J. Shinar, J. Mater. Chem. C,
2013, 1, 5191.
282. C. Liu, Y. Li, C. Yang, H. Wu, J. Qin, Y. Cao, Chem. Mater.
2014, 26, 3074.
283. J.-H. Cook, J. Santos, H. Li, H. A. Al-Attar, M. R. Bryce, A. P.
Monkman, J. Mater. Chem. C, 2014, 2, 5587.
284. C. J. Tonzola, A. P. Kulkarni, A. P. Gifford, W. Kaminsky, S. A.
Jenekhe, Adv. Funct. Mater., 2007, 17, 863.
285. Z. Wang, Y. Feng, S. Zhang, Y. Gao, Z. Gao, Y. Chen, X. Zhang,
P. Lu, B. Yang, P. Chen, Y. Ma, S. Liu, Phys. Chem. Chem. Phys.,2014, 16, 20772.