簡易檢索 / 詳目顯示

研究生: 葉柏揚
Richard
論文名稱: Flow Structure around a Rising Clean Microbubble
微氣泡於靜水中自由浮升之流場結構研究
指導教授: 李雄略
Shong-Leih Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 56
中文關鍵詞: 氣泡浮升
外文關鍵詞: bubble, rising
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    微氣泡在流場中流動的現象,在微機電系統中應用相當廣泛,具有深入探討的空間,而微尺度下,表面張力對流場的影響明顯,使用實驗設備來觀察微氣泡並不容易,需要非常純淨的水質以及昂貴的器材,以數值模擬的方式除了可避免上述問題,亦有良好的理論基礎,物理現象易於明瞭,模擬與實驗兩者互相印證,則能更深入的解釋微氣泡流動的行為。
    本文研究方式,是以適當的數值方法搭配物理條件,模擬微氣泡在圓柱容器中自由浮升之流場,由自由液面上跨相之壓力差獲得曲率,再利用曲率反求微氣泡形狀,同時得到浮升之終端速度。研究結果也發現,跨相壓力差與浮力,對曲率具有一定程度的影響,並在自由液面上構成力的平衡。經由流場收斂所獲得的曲率,可以判斷微氣泡形狀為扁橢圓且前後不對稱,前方受形狀阻力擠壓,曲率較小而外形稍扁;後方受黏滯力拉扯因此形狀較圓,但整體仍以扁橢圓展現。


    目 錄 摘 要 I 誌 謝 II 目 錄 III 圖目錄 V 符號說明 VI 第一章 序論 1 1.1前言 1 1.2文獻回顧 1 1.3研究目的 5 第二章 理論分析 7 2.1問題描述 7 2.2跨相之壓力躍升 8 2.3統御方程式 8 2.4自由液面之力平衡方程式 11 2.5自由液面之法線速度 13 2.6曲率反求形狀 15 2.7微氣泡之體積計算 15 2.8邊界條件 16 第三章 數值方法 18 3.1網格系統 18 3.2單相區與跨相區之定義 18 3.3統御方程式之差分 18 3.4應用NAPPLE algorithm求解壓力場 22 3.5計算流程 27 第四章 結果與討論 29 4.1網格系統與使用參數 29 4.2初猜外形之改良 29 4.3自由液面上資訊交換之改良 30 4.4曲率計算形狀之改良 30 4.5壓力參考點之改良 31 4.6收斂寬裕度 31 4.7流場之分析 32 4.8氣泡曲率之分析 34 4.9氣泡形狀之分析 34 4.10終端速度之比較 35 第五章 結論 37 參考文獻 38 圖目錄 圖2.1 題目尺寸示意圖 43 圖2.2 幾何法示意圖 44 圖2.3 計算微氣泡體積變化量示意圖 45 圖3.1 NAPPLE網格示意圖 46 圖3.2 NAPPLE網格位於跨相處示意圖 47 圖4.1(a) 微氣泡 之速度場 48 圖4.1(b) 微氣泡 之速度場(局部) 49 圖4.1(c) 微氣泡 之速度場(局部) 50 圖4.1(d) 微氣泡 之速度場(局部) 51 圖4.1(e) 微氣泡 之速度場(局部) 52 圖4.2 微氣泡 之等壓線場 53 圖4.3 微氣泡 之曲率 54 圖4.4 微氣泡 之形狀 55 圖4.5 氣泡直徑與終端速度之關係圖 56

    參考文獻
    [1]Duineveld, P. C., 1995, “The Rise Velocity and Shape of
    Bubbles in Pure Water at High Reynolds Number,” J.
    Fluid Mechanics, 292, pp. 325-332.
    [2]Wu, M., and Gharib, M., 2002, “Experimental Studies on
    the Shape and Path of Small Air Bubble Rising in Clean
    Water,” Physics of Fluids, 14, pp. L49-L52.
    [3]Ortiz-Villafuerte, J., Hassan, Y.A., and Schmidl, W. D.,
    2001, “Rocking Motion, Trajectory and Shape of Bubbles
    Rising in Small Diameter Pipes,”Experimental Thermal
    and Fluid Science, 25, pp. 43-53.
    [4]Zun., I., 1980, “The Transverse Migration of Bubbles
    Influenced by Wall in Vertical Bubble Flow,” Int. J.
    Multiphase Flow, 6, pp. 583-588.
    [5]Takemura, F., Takagi, S., Magnaudet, J., and Matsumoto,
    Y., 2002, “Drag and Lift Forces on a Bubble Rising
    near a Vertical Wall in a Viscous Liquid,” J. Fluid
    Mechanics, 461, pp. 277-300.
    [6]Krishna, R., Urseanu, M.I., Von Baten, J.M., and
    Ellenberger, 1999, “Wall Effects on the Rise of Single
    Gas Bubbles in Liquids,” Int. Comm. Heat Mass Transfer,
    26, pp. 781-790.
    [7]De Tezanos Pinto., M., Abraham., M. A., and Cerro., R.
    L., 1997, “How To Bubbles Enter A Capillary” Chemical
    Engineering Science, 52, No. 11, pp. 1685-1700.
    [8]Hirt, C. W., and Nichols, B. D., 1981, “Volume of Fluid
    (VOF) Method for the Dynamics of free Boundaries,”
    Journal of Computational Physics, 39, pp. 201-225.
    [9]Lee, S. L., and Sheu,S. R., 2001, “A New Numerical
    Formulation for Incompressible Viscous Free Surface Flow
    without Smearing the Free Surface,” Int. J. Heat Mass
    Transfer, 44, pp. 1837-1848.
    [10]Shirani, E., Ashgriz, N., and Mostaghimi, J., 2005,
    “Interface
    Pressure Calculation Based on Conservation of Momentum
    for Front
    Capturing methods” Journal of Computational Physics,
    203, pp. 154-175.
    [11]Magnaudet, J.,Rivero, M., and Fabre, J., 1995,
    “Accelerated Flows
    Past A Rigid Spherical Bubble. Part 1. Steady
    Straining Flow,”
    Journal of Fluid Mechanics, 284, pp. 97-135.
    [12]Moore, D. W., 1963, “The Boundary Layer on a Spherical
    Gas Bubble,” Journal of Fluid Mechanics, 16, pp. 161-
    176.
    [13]張元榕, 2005,微氣泡於垂直方管內上升之研究,國立清華大學
    碩士論文,新竹,台灣。
    [14]Sarpkaya, T., 1996, “Vorticity Free Surface and
    Surfactants,” Annual Review of Fluid Mechanics, 28,
    pp. 83-128.
    [15]Tsai, W. T., and Yue, D. K. P., 1996, “Computation of
    Nonlinear Free-Surface Flows,”Annual Review of Fluid
    Mechanics,28, pp. 249-278.
    [16]Lee, S. L., 1989, “Weighting Function Scheme and Its
    Application
    on Multidimensional Conservation,” Int. J. Heat Mass
    Transfer, 32, pp. 2065-2073.
    [17]Lee, S. L., and Sheu, S. R., 2003, “Filling Process in
    an Open Tank,”ASME J. of Fluids Engineering, 125, pp.
    1016-1021
    [18]Lee, S. L., and Tzong, R. Y., 1992, “Artificial
    Pressure for Pressure-Linked Equation,” Int. J. Heat
    Mass Transfer, 35, pp.
    2705-2716.
    [19]Lee, S. L., 1989, “A Strongly-Implicit Solver for Two-
    Dimensional Elliptic Differential Equations,”
    Numerical Heat Transfer, 16,pp. 161-178.
    [20]Lee, S. L., and Lee, H. D., 2007, “Evolution of Liquid
    Meniscus Shape in a Capillary Tube,” ASME J. Fluids
    Engineering, 129, pp. 957-965
    [21]Hadamard, J., 1911, “Mouvement Permanent Lent d’une
    Sphere Liquide Visqueuse dansun Liquid Visqueux,” C.,
    R., Acad. Sci. Paris Ser. A-B, 152, pp. 1735-1739.
    [22]Hua, J., Stene, J. F., and Lin, P., 2008, “Numerical
    Simulation of 3D Bubbles Rising in Viscous Liquids
    Using A Front Tracking Method,” Journal of
    Computational Physics, 227, pp. 3358-3382.
    [23]Unverdi, S., and Tryggvason, G., 1992, “A Front-
    Tracking Method for Viscous Incompressible Multifluid
    Flows,” Journal of Computational Physics, 100, pp. 25-
    37.
    [24]Tomiyama, A., Celata, G. P., Hosokawa, S., and Yoshida,
    S., 2002, “Terminal Velocity of Single Bubbles in
    Surface Tension Force Dominant Regime,” Int. J.
    Multiphase Flow, 28, pp. 1497-1519.
    [25]王信雄, 2006,微小氣泡於軸對稱圓管內上升運動之研究,國立
    清華大學碩士論文,新竹,台灣。
    [26]賴盈宏, 2007,微氣泡於垂直圓管內浮升之形狀變化研究,國立
    清華大學碩士論文,新竹,台灣。
    [27]Blackmore, D., and Ting, L., 1985, “Surface Integral
    of Its Mean Curvature Vector,” Society for Industrial
    and Applied Mathematics, 27, No. 4, pp. 569-572.
    [28]Ye, T., Shyy, W., and Cheng, J. N., 2001, “A Fixed-
    Grid, Sharp-Interface Method for Bubble Dynamics and
    Phase Change,” Journal of Computational Physics, 174,
    pp. 781-815.
    [29]Celata, G. P., Cumo, M., D’Annibale, F., Marco, D. P.,
    Tomiyama, A., and Zovini, C., 2006, ” Experimental
    Thermal and Fluid Science, 31, pp. 37-53.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE