研究生: |
柳芳宛 LIU FANG WAN |
---|---|
論文名稱: |
一位六年級教師實踐比與比值教學之行動研究 An action research of a sixth-grade teacher's practicing ratio and proportion teaching |
指導教授: | 林碧珍博士 |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
竹師教育學院 - 數理教育研究所 Graduate Institute of Mathematics and Science Education |
論文出版年: | 2010 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 238 |
中文關鍵詞: | 比與比值 、比感 、比的意義 、比例 、行動研究 |
外文關鍵詞: | ratio and proportion, sense of ratio, meaning of ratio |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是描述一名國小教師進行六年級比與比值教學的行動研究歷程,內容主要呈現研究者在實踐行動時所遭遇的問題,與透過不斷反思,尋求解決策略的歷程。
本研究採行動研究法,以研究者本身任教的六年甲班為研究場域,研究者在進行文獻探討與參考學生前測中的表現後,以能力指標與本單元的教學目標為主軸,與諍友討論並形成教學活動設計,接著才進入現場教學。論文內容呈現本單元中「比感」、「比的意義」、「比值」三個教學主題的行動歷程。研究過程中,研究者透過以下方式做為行動策略的來源:閱讀文獻、分析教材、蒐集並分析學生的解題記錄與數學日記、撰寫教學反思日誌、與諍友們討論,以及在跨校教師成長團體中與本單元相關的的教室觀察和討論會。
在本研究中,研究者主要透過布題的設計,幫助研究者分別達成預期的目標,包括題目語意結構的選擇、題型的改變、情境的設計以及數字的調整。研究發現學生會受數字影響而忽略情境,透過課堂布題討論以及進行分類活動確能逐漸形成學生比感,也由於比例情境多元,比感教學需在不同情境不斷延續。而比的意義可以利用「關係的集合」語意結構,幫助學生查察到情境中有配對關係的兩數量,而利用差數規律題目的對照能夠突顯比例問題中的兩數量為乘除關係。因此在情境可類推,兩配對數量為乘除關係且具有意義時,此兩數量才能用比「:」來記錄其關係。比值概念則在多個對象比較的情境能突顯比值的需求感,並可發展至某項為1的自然想法;再透過教師課堂提問與適當情境,引導學生至後項為1的路徑以學習比值,數字設計上以前項為後項的整數倍為佳。依問題中兩數量的單位相同或相異,比值有不同意義,均需做介紹。利用九頭身美少女與黃金比值情境可以提升學生至比例關係中的兩數量可放大縮小的比例運思層次。
雖然九頭身美少女、黃金比值與放大縮小相類似,但本研究中只探討一維(長度)的改變,建議後續研究可朝向放大縮小語意結構方向進行。
This study demonstrated action research process of an elementary math teacher teaching “ratio and proportion” to the 6th graders. The study was mainly to present the problems the researcher met while practicing activities and the procedure of seeking strategies to solve problems.
This action research took class A ,where the researcher herself was the teacher , as the research subject . All the teaching activities were designed according to National Math Curriculum Guideline, textbook teaching targets, students pretest and the discussion with teachers in a mathematical professional group.
The references of strategies used in this research are as follow: literature review, students pretest, textbook analysis, students performance evaluation such as the observation of solving questions and students mathematics diary, as well as teacher’s log,and frequent discussions with other teachers in a mathematical professional group. The teaching strategies included the chosen of semantic structure of questions, the types of questions, the change of numbers and situations of questions.
The study shows that
1)Students often ignored the context of questions while solving problems.
2)Students can develop their sense of ratio through practicing on compiling questions and class discussion
3)Teachers should help students build up sense of ratio by providing various contexts of questions.
4)Teachers should help students recognize two quantities has a relation of subtract and divide, that can be expressed as “a to b” or “a:b”. To help student understand better, using semantic structure of associated sets is a good tool.
5)The concept of ratio and proportion is better be built up in a multi-objects comparative context. Teachers should help students understand the relationship between antecedent (the first number) and consequent (the second number), the concept of the consequent should become 1 is suggested to teach in class.
6)In this study, there is only a change of one dimension (length), other identical dimension changes are suggested in further research.
一、中文部份:
古明峰(2000)。數學評量的現況與發展。國教世紀,189,35-41。
江南青(1985)。比例概念的診斷與補救。未出版碩士論文,國立臺灣師範大學,台北。
何意中(1988)。國小三、四、五年級學生比例推理之研究。花蓮師院學報,2,387-433。
吳明隆(2001)。教育行動研究導論-理論與實務。台北:五南。
吳茵慧、林益興、林宜靜、黃若玲(2004)。國中小數學教材與教學探討-比例篇。台北:國立教育研究院籌備處。
李惠貞(1981)。兒童比例概念的發展。花蓮師專學報,12,137-166。
沈明勳、劉祥通(2002)。分析學生解比例問題文獻-國小數學課程與教學的建議。科學教育研究與發展季刊,27,81-96。
林志成(2007)。覺知行思的教育行動智慧暨其實踐省思。載於周淑卿、陳麗華主編,教育改革的挑戰與省思 (頁57-88)。高雄:麗文。
林碧珍(2000)。在職教師數學教學專業發展方案的協同行動研究。國立新竹師範學院學報,13,115-148。
林碧珍(2002)。協助教師撰寫數學日誌以促進反思能力之協同行動研究。國立新竹師範學院學報,15,149-180。
林碧珍(2010)。比與比值初始概念的教學初探。國立新竹教育大學教育學報,27(1),127-158。
林碧珍、蔡寶桂、楊媖媖(2009)。整數乘法替代性教材教法之理論與實務。台北:師大書苑。
林福來(1984)。青少年的比例概念發展。科學教育月刊,73,7-26。
林福來(1990)。比例概念深層結構的了解研究I。(國科會專題研究計畫成果報告編號:NSC-78-0111-S-003-11A)。台北:中華民國行政院國家科學委員會。
林福來、郭汾派、林光賢(1986)。國中生的比例概念發展。科學教育月刊,87,14-42。
林福來(1984)。青少年的比例概念發展。科學教育月刊,73,7-26。
胡幼慧(1996)。質性研究:理論、方法及本土女性研究實例。台北:巨流。
夏林清、中華民國基層教師協會譯(1997)。行動研究方法導論-教師動手做研究。台北:遠流。(Altrichter, H., Posch, P. & Somekh, B.,1993)
翁宜青、劉祥通(2003)。一位國小三年級學生解簡單式比例問題之研究。科學教育研究與發展季刊,31,32-53。
高敬文(1996)。質化研究方法論。台北市:師大書苑。
康軒教科書(2008)。國民小學數學學習領域第十冊教師手冊。台北:康軒出版社。
康軒教科書(2009a)。國民小學數學學習領域第十一冊教師手冊。台北:康軒出版社。
康軒教科書(2009b)。國民小學數學學習領域第十二冊教師手冊。台北:康軒出版社。
張文瓊(2008)。一位五年級教師實踐體積教學之行動研究。未出版碩士論文,國立新竹教育大學,新竹。
張育萍、劉祥通(2005)。一位國小五年級學生對比值問題的解題表現。科學教育研究與發展季刊,39,39-59。
張芬芬譯(2005)。質性研究資料分析。台北:雙葉書廊。(Miles,M.B., & Huberman,A.M., 1994)
教育部(2001)。國民小學九年一貫課程暫行綱要。台北:教育部。
教育部(2003)。國民中小學九年一貫課程綱要。台北:教育部。
教育部(2008)。97年國民中小學九年一貫課程綱要。線上檢索日期:2009年12月06日。網址:http://www.edu.tw/eje/content.aspx?site_content_sn=15326。
莊玉如(2005)。國小四年級學童比例問題解題表現之研究。未出版碩士論文,國立台中教育大學,台中。
郭佩儀(2007)。從比例問題的表面結構和深層結構探究國一學生的解題表現及解題策略情形。未出版碩士論文,國立臺灣師範大學,台北。
郭祈銘(2006)。國小六年級兒童比概念分析之研究。未出版碩士論文,國立台中教育大學,台中。
陳竹村、林淑君、陳俊瑜(2002)。國小數學教材分析-比(含線段圖)。台北:國立教育研究院籌備處。
陳建州(2007)。一位國中學生解比值與比例問題之個案研究。未出版碩士論文,國立嘉義大學,嘉義。
陳美玉(1998)。教學法與教師行動。載於陳美玉主編,教師專業:教學法的省思與突破(頁171-189)。高雄:麗文文化。
陳英傑(1992)。台南師院學生比例概念的研究。台南師院學報,25,319-343。
陳敏華(1997)。國小六年級比和比例概念初探。未出版碩士論文,國立台中師院,台中。
陳淑珍(2008)。探究國小六年級學童在比與比值的知識結構。未出版碩士論文,國立台中教育大學,台中。
陳惠邦(1998)。教育行動研究。台北:師大書苑。
黃政傑(1987)。課程評鑑。台北:師大書苑。
黃湘武、劉謹輔、陳忠志、杜鴻模、陸業堯、江新合(1985)。國中學生質量守恆、重量守恆、外體積觀念與比例推理能力之抽樣調查與研究。中等教育,36(1),44-65。
楊錦連(1999)。國小高年級兒童解決比例問題之研究。未出版碩士論文,國立嘉義大學,嘉義。
維基百科(2009)。頭身。線上檢索日期:2009年12月24日。網址:http://zh.wikipedia.org/zh-hant/%E9%A0%AD%E8%BA%AB
劉秋木(1996)。國小數學科教學研究。台北:五南。
劉祥通、周立勳(1998)。國科會八十六年度「科學教育研究專題研究計畫」成果討論會論文摘要。載於行政院國家科學委員會科學教育發展處主編,八十七年度數學教育專題研究計畫成果討論會摘要(頁302-307)。台北:行政院國家科學委員會科學教育發展處。
劉祥通、周立勳(1999)。國小比例問題教學實踐課程之開發研究。中師數理學報,3(1),3-1-3-25。
劉祥通、施瀚皓(2005)。哪一杯的蜜液比較甜?-從解題類型談教學策略。數學教育,21,75-80。
劉祥通(2007)。分數與比例問題解題分析-從數學提問教學的觀點。台北:師大書苑。
蔣治邦、陳竹村、謝堅、陳俊瑜、林淑君(2002)。國小數學教材分析-分數的數概念與運算。台北:國立教育研究院籌備處。
蔡清田(2000a)。教育行動研究。台北:五南。
蔡清田(2000b)。行動研究及其在教育研究上的應用。載於中正大學教育研究所主編,質的研究方法(頁53-76)。高雄:麗文文化。
蔡嘉豪(2008)。國小學童比例及機率理解之解題規則探討-潛在類別及混合Rasch模式分析。未出版論文,國立台中教育大學,台中。
鄭英豪(1990)。比的參數與比例關係式的了解。未出版碩士論文,國立臺灣師範大學,台北。
謝堅(2007,4月)。比與比值。大嘴鳥親子教育雜誌,127,58-61。
魏宗明、劉祥通(2003)。兒童對數學比例問題的建構。科學教育研究與發展季刊,32,87-108 。
魏金財(1987)。兒童比例推理能力探討。載於韓士松、梁雲霞主編,七十六年國小課程學術研討會專輯(頁122-140)。台北:臺灣省國民學校教師研習會。
二、英文部份:
Akar, G. (2009). Conceptions of between-ratios and within-ratios. In M. Tzekaki, M. Kaldrimidou, & H. Sakonidis (Eds.), Proceedings of the 33rd conference of the international group for the psychology of mathematics education, 5, (p.326). Thessaloniki, Greece: PME.
Behr, M. J., Lesh, R., Post, T. R., & Silver, E. A. (1983). Rational number concepts. In R. Lesh & M. Landau (Eds.), Acquisition of Mathematics Concepts and Processes (pp. 45-90). NY: Academic Press.
Carmer, K. & Post, T. (1993). Connecting research to teaching proportional reasoning. Mathematics Teacher, 86(5), 404-407.
Carpenter, T. P. & Moser, J. M. (1983). The acquisition of addition and subtraction concepts. In R. Lesh & M. Landau (Eds.), Acquisition of Mathematics Concepts and Processes (pp.7-42). NY: Academic Press.
Cheng, D., & Sabinin, P. (2009). Connecting visual and proportional solutions to a comparison task regarding steepness. In M. Tzekaki, M. Kaldrimidou, & H. Sakonidis (Eds.), Proceedings of the 33rd conference of the international group for the psychology of mathematics education, 5, (p.446). Thessaloniki, Greece: PME.
Dole, S., Clarke, D., Wright, T., Hilton, G, & Roche, A. (2008). Eliciting growth in teachers’ proportional reasoning: measuring the impact of a professional development program. In M. Goos, R. Brown, & K. Makar (Eds.), Navigating currents and charting directions proceedings of the 31st annual conference of the mathematics education research group of Australasia,(1), (pp.163-169). Australia: The University of Queensland.
Dooren, W. V., Bock, D., Evers, M., & Verschaffel, L. (2009). Students’ overuse of proportionality on missing-value problems: how numbers may chang solutions. Journal for Research in Mathematics Education. 40(2), 187-211.
Dooren, W. V., Bock, D., Gillard, E., & Verschaffel, L. (2009).Add?or Multiply?A study of the development of primary school students’proprotional reasoning skills. In M. Tzekaki, M. Kaldrimidou, & H. Sakonidis (Eds.), Proceedings of the 33rd conference of the international group for the psychology of mathematics education, 5, (pp.281-288). Thessaloniki, Greece: PME.
Freudenthal, H. (1983). Didactical phenomenology of mathematical structures. Holland Dordrecht: D. Reidel Publishing Co.
Gilbert, M., Canada, D., & Adolphson, K. (2007). Proportional Reasoning: (Mis)conceptions of elementary preservice teachers. In T. Lamberg & L. R. Wiest (Eds.), Proceedings of the 29th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, Stateline (Lake Tahoe), NV: University of Nevada, Reno.
Hart, K. (1988). Ratio and proportion. In M. Behr & J. Hiebert (Eds.), Number concepts and operations in the middle grades (pp. 198-219). Reston, VA: NCTM.
Hart, k. (1981). Ration and proportion. In K. Hart, D. Kerslake, M. L. Brown, G. Ruddock, D. E. Kuchemann, & M. McCartney (Eds.), Children’s understanding of mathematics: 11~16( pp. 88-101).Oxford, London: Northampton.
Hoffer, A. (1992). Ratios and proportional thinking. In T. Post (Ed.), Teaching mathematics in grades K-8 research-based methods (2nd ed) (pp. 303-330). Needham Heights, MA: Allyn and Bacon.
Hou, M. L. (2002). Sixth grade children's learning of the ratio and proportion conception. Unpublished master’s thesis, National Pingtung Universtity of Education: Pingtung.
Jeong, Y., Levine, S. C. & Huttenlocher, J. (2007). The development of proportional reasoning: effect of continuous versus discrete quantities. Journal of Cognition and Development, 8(2), 237-256.
Kaput, J. & West, M. (1994). Missing-value proportional reasoning problems: Factors affecting informal reasoning patterns. In G. Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp. 235-292). Albany, NY: State University of New York Press.
Karplus, R., Pulos, S., & Stage, E. K. (1983). Proportional reasoning of early adolescents. In R. Lesh & M. Landau (Eds.), Acquisition of mathematics concepts and processes ( pp. 45-90). NY: Academic Press.
Karplus, R. (1981).Education and formal thought-a modest proposal.In I. E. Sigel, D. M. Brodzinsky, & R. M. Golinkoff (Eds.), New directions in Piagetian theory and practice. Hillsdale, N.J.: L. Erlbaum Associates.
Karplus, R., Pulos, S. and Stage, E. K. (1980). Early adolescents' structure of proportional reasoning. In R. Karplus (Ed.), Proceedings of the Fourth International Conference for Psychology of Mathematics Education (pp. 136-142). CA: Berkeley.
Kiliç, Ç., & Özdaş, A. (2007). Turkish pre-service elementary school teachers’ solution strategies in proportional reasoning problems. In Woo, J. H., Lew, H. C., Park, K. S., & Seo, D. Y. (Eds. ), Proceedings of the 31st conference of the international group for the psychology of mathematics education, 1, (p.239). Seoul: PME.
Lamon, S. (2006). Teaching fractions and ratios for understanding: Essential content knowledge and instructional strategies for teachers(2nd ed). Mahwah, N.J.: Lawrence Erlbaum Associates.
Lamon, S. (1999). Teaching fractions and ratios for understanding: Essential content knowledge and instructional strategies for teachers. Mahwah, N.J.: Lawrence Erlbaum Associates.
Lamon, S. (1995). Ratio and proportion: Elementary didactical phenomenology. In J. Sowder, & B. Schappell (Eds.), Providing a foundation for teaching mathematics in the middle grades (pp. 167-198). Albany, NY: State University of New York Press.
Lamon, S. (1994). Ratio and proportion: Cognitive foundations in unitizing and norming. In G. Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp. 89-120). Albany, NY: State University of New York Press.
Lamon, S. (1993). Ratio and proportion: Connecting content and children’s thinking. Journal for Research in Mathematics Education. 24(1), 41-61.
Lamon, S. (1990). Ratio and proportion: Cognitive foundations in unitizing and norming. (ERIC Document Reproduction Service No. ED325335)
Lesh, R., Post, T., & Behr, M. (1988). Proportional reasoning. In J. Hiebert & M. Behr (Eds.), Number Concepts and Operations in the Middle Grades(pp. 93-118). Reston, VA: NCTM.
Lin, F. L. (1991). Characteristics of ‘Adders’ in proportional reasoning. Proceeding of the National Science Council(Part D: Mathmatics, Science, and Technology Educaion), 1(1), 1-13.
Lo, J. J. (2004). Prospective elementary school teachers’ solution strategies and reasoning for a missing value proportion task.In Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education, 3, (pp.265-272). Bergen, Norway: PME.
Lo, J. J. & Watanabe, T. (1997). Developing ratio and proportion schemes: A story of fifth grader. Journal for Research in Mathematics Education. 28(2), 216-236.
Misailidou, C. & Williams, J. (2004).Helping children to model proportionally in group argumentation: overcoming the “constant sum” error. In Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education, 3, (pp.321-328). Bergen, Norway: PME.
Misailidou, C. & Williams, J. (2003). Diagnostic assessment of children’s proportional reasoning. Journal of Mathematical Behavior, 22, 335-368.
Monteiro, C. (2003). Prospective elementary teachers’ misunderstanding in solving ratio and proportion problems. In N. A. Pateman, B. J. Dougherty & J. Zilliox (Eds.),Proceedings of the 27th Conference of the International Group for the Psychology of Mathematics Education , 3, (pp. 317-323). Honolulu, Hawai’i.
Noelting, G. (1980a). The development of proportional reasoning and the ratio concept. Part I- Differentiation of stages. Education Studies in Mathematics, 11, 217-253.
Noelting, G. (1980b). The development of proportional reasoning and the ratio concept. Part II- Problem-structure at successive stages; problem-solving strategies and the mechanism of adaptive restructuring. Education Studies in Mathematics, 11, 331-363.
Ohlsson, S. (1988). Mathematical Meaning and Applicational Meaning in the Semantics of Fractions and Related Concepts. In J. Heibert & M. Behr (Eds.), Number Concepts and Operations in the Middle Grades (pp. 53-92). Reston, VA: NCTM.
Paige, D. D., Willcutt, R. E., & Wagenblast, J. M. (1968). Mathematics Methods for Junior High School Teachers (pp. 47-57). Boston: Prindle, Weber & Schmidt.
Pothier, Y. & Sawada, D. (1983). Partitioning: the emergence of rational number ideas in young children. Journal for Research in Mathematics Education. 14(4), 307-317.
Quintero, A. H. (1987). Helping children understand ratios. Arithmetic Teacher, 34(9), 17-21.
Ruiz Ledesma, E. F. & Valdemoros Álvarez, M. E. (2004). Connection between qualitative and quantitative thinking about proportion: the case of Paulina. In M. J. Hoines & A. B. Flugestad (Eds), Proceeding of the 28th Conference of the International Group for the Psychology of Mathematics Education, 3, (pp.201-208). Bergen, Norway: PME.
Ruiz Ledesma, E. F. & Lupiáñez, J. L. (2009). Detecting psychological obstacles to teaching and learning the topics of ratio and proportion in sixth grade primary pupils. Electronic Journal of Research in Educationa Psychology, 17(7), 397-424.
Singh, P. (2001). Understanding the concepts of proportion and ratio constructed by two grade six students. Educational studies in mathematics, 43, 271-292.
Steinthorsdottir, O. B. (2006). Proportional reasoning: variable influencing the problems difficulty level and one’s use of problem solving strategies. In Novotná, J., Moraová, H., Krátká, M. & Stehlíková, N. (Eds.), Proceedings 30th conference of the international group for the psychology of mathematics education, 5, (pp.169-176). Pargue: PME.
Steinthorsdottir, O. B. (2005). Girls journey towards proportional reasoning. In H. L. Chick & J. L. Vincent (Eds.), Proceedings of the 29th conference of the international group for the psychology of mathematics education, 4, (pp. 225-232). Melbourne: PME.
Thompson, P. W. (1994). The development of the concept of speed and its relationship to concepts of rate. In G. Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp. 179-234). Albany, NY: State University of New York Press.
Tourniaire, F. & Pulos, S. (1985). Proportional reasoning: A review of the literature. Education studies in mathematics, 16(2), 181-204.
Watson, J., Callingham, R., & Donne, J. (2008).Proportional reasoning: student knowledge and teachers’ pedagogical content knowledge. In M. Goos, R. Brown, & K. Makar (Eds.), Navigating currents and charting directions proceedings of the 31st annual conference of the mathematics education research group of Australasia,(1), (pp.563-571). Australia: The University of Queensland.