研究生: |
楊子賢 Yang, Tzu Hsien |
---|---|
論文名稱: |
碳纖布受力變形之數值解法研究 Numerical simulation on deformation of carbon fabrics |
指導教授: |
李雄略
Lee, Shong Leih |
口試委員: |
陳玉彬
Chen, Yu Bin 陳志臣 Chen, Jyh Chen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 47 |
中文關鍵詞: | 織物強化 、正交各向異性材料 、有限差分法 |
外文關鍵詞: | Fabric reinforcement, Orthotropic, Finite difference method |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用有限差分法,來模擬編織碳纖布在受到外力時,所產生的變形情形,此處所討論的碳纖布編織方式皆為簡單編織(Plain weave),由於碳纖布經過編織,其變形情形不屬於等向性材料(Isotropic material)的變形,故其力學分析上需以其他的方式進行討論,而在研究過程中,本文將編織碳纖布視為正交各向異性材料(Orthotropic material),來分析其變形情形。
過往文獻中發現當一長形編織布,受到兩端拉力而產生變形時,其編織布變形會呈現三種不同的變形區域,分別為兩端經緯線皆被固定的區域,以及經緯線其中一端被固定住,而另一端為自由端區域,和經緯線兩端皆為自由端,這三種不同的區域。
而在本研究中,定義其變形的形式會與一無因次化β值的大小有關,當β值等於1時,為一符合等向性材料(Isotropic material)的變形,而在本文中,當β值越小越接近0時,則越接近視為正交各向異性材料(Orthotropic material)的編織碳纖布性質,故本文中會探討在β值小於1的情形下,各種不同拉伸長度下,其編織布受力所產生的變形情形。
In this study, using finite difference method to simulate deformation of woven carbon fabrics. In this case, woven carbon fabrics all weaving by plain weave. After weaving, the mechanical behavior can’t be considered isotropic material. It is required use other ways on the mechanical analysis and discussion, and in this study, will treated woven carbon fabrics as an orthotropic material to analyze mechanical behavior.
Past literature discovered when a woven carbon fabrics deformed by bias test. It will show three different zones. In zone A, the warp and weft yarns have both clamped. In zone B one yarn direction is clamped, the other direction is free end. In zone C, the warp and weft yarns have all free ends.
Definition a dimensionless number β, when the value is equal to 1, woven carbon fabrics will be considered the deformation of isotropic material, and in this study, when the value is less than 1, even closer to 0, woven carbon fabrics will be regarded as an orthotropic materials. This study will use finite difference method to simulate a bias test of 2D woven carbon fabrics in the case of β less than 1.
[1]J. Launay, G. Hivet, A. V. Duong and P. Boisse, Experimental analysis of the influence of tensions on in plane shear behaviour of woven composite reinforcements, Composites science and technology, 68(2), 506-515 (2008).
[2]P. Boisse, A. Gasser and G. Hivet, Analyses of fabric tensile behaviour: determination of the biaxial tension-strain surfaces and their use in forming simulations, Composites Part A: Applied Science and Manufacturing, 32(10), 1395-1414 (2001).
[3]X. Q. Peng, J. Cao, J. Chen, P. Xue, D. S. Lussier and L. Liu, Experimental and numerical analysis on normalization of picture frame tests for composite materials, Composites Science and Technology, 64, 11-21 (2004).
[4]P. Harrison, M. J. Clifford and A. C. Long, Shear characterization of viscous woven textile composites: a comparison between picture frame and bias extension experiments, Composites Science and Technology, 64, 1453-1465 (2004).
[5]J. Cao, R. Akkerman, P. Boisse, J. Chen, H. S. Cheng, E. F. de Graaf and W. Lee, Characterization of mechanical behavior of woven fabrics: experimental methods and benchmark results, Composites Part A: Applied Science and Manufacturing, 39(6), 1037-1053 (2008).
[6]M. A. Khan, T. Mabrouki, E. Vidal-Sallé and P. Boisse, Numerical and experiment analyses of woven composite reinforcement forming using a hypoelastic behavior. Application to the double dome benchmark, Journal of Materials Processing Technology, 210, 378-388 (2010).
[7]P. Boisse, B. Zouari and J. L. Daniel, Importance of in-plane shear rigidity in finite element analyses of woven fabric composite pre-forming, Composites Part A: Applied Science and Manufacturing, 37(12), 2201-2212 (2006).
[8]P. Badel, E. Vidal-Sallém and P. Boisse, Large deformation analysis of fibrous materials using rate constitutive equations, Computers and Structures, 86(11), 1164-1175 (2008).
[9]S. Gatouillat, A. Bareggi, E. Vidal-Sallé and P. Boisse, Meso modelling for composite preform shaping–simulation of the loss of cohesion of the woven fibre network, Composites Part A: Applied Science and Manufacturing, 54, 135-144 (2013).
[10]M. Julio García Ruíz and L. Yarime Suárez González, Comparison of hyperelastic material models in the analysis of fabrics, International Journal of Clothing Science and Technology, 18(5), 314-325 (2006).
[11]Y. Aimene, B. Hagege, F. Sidoroff, E. Vidal-Sallé, P. Boisse and S. Dridi, Hyperelastic approach for composite reinforcement forming simulations, International Journal of Material Forming, 1(1), 811-814 (2008).
[12]X. Q. Peng, Z. Y. Guo and P. Harrison, A simple anisotropic fiber reinforced hyperelastic constitutive model for woven composite fabrics, International Journal of Material Forming, 3(1), 723-726 (2010).
[13]H. Yin, X. Q. Peng, T. Du and Z. Guo, Draping of plain woven carbon fabrics over a double-curvature mold, Composites Science and Technology, 92, 64-69 (2014).
[14]J. Pazmino, S. Mathieu, V. Carvelli, P. Boisse and S. V. Lomov, Numerical modelling of forming of a non-crimp 3D orthogonal weave E-glass composite reinforcement, Composites Part A: Applied Science and Manufacturing, 72, 207-218 (2015).
[15]S. L. Lee and C. R. Ou, Integration scheme for elastic deformation and stresses, Journal of applied mechanics, 66(4), 978-985 (1999).
[16]L. P. Kollar and G. S. Springer, Mechanics of Composite Structure, Cambridge University Press (2009).
[17]Niranjan K. Naik, Woven Fabric Composites, Indian Institute of Technology press (1994).