簡易檢索 / 詳目顯示

研究生: 林啟弘
Lin, Chi-Hung
論文名稱: 正交分頻多工系統下使用時域次轉換矩陣之低複雜度SLM方法以降低峰均值功率比
A Low-Complexity SLM Approach Based on Time-domain Conversion Sub-matrices for PAPR Reduction in OFDM Systems
指導教授: 蔡育仁
Tsai, Yuh-Ren
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 42
中文關鍵詞: 正交分頻多工峰均值功率比選擇映射
外文關鍵詞: OFDM, PAPR, SLM
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 正交分頻多工在目前的通訊系統中是非常熱門的,它擁有高傳輸的效率且能有效對抗衰減通道。但它其中有一個很顯著的問題是過高的尖峰平均值功率比,它會造成訊號進入功率放大器的時候有可能運作在非線性區域,並且導致輸出訊號產生失真。因此,對於這個問題已經有很多解決方法被提出來了,這其中包括選擇映射(Selective Mapping),部分傳輸序列(Partial Transmit Sequence)。在這兩個方法中,又以選擇映射有較佳的性能,但這方法的缺點在於所需要的運算複雜度太高,因為它需要大量的IFFT硬體元件。因此Wang就提出一個用簡單的轉換矩陣代替IFFT硬體元件的概念,由於Wang的方法找到的可用傳送訊號並不多,因此我們在不比Wang複雜度高的情況下提出利用時域次轉換矩陣之低複雜度的選擇映射方法,去解決可用的傳送訊號太少這個問題。也就是說用多個更簡單的轉換矩陣代替Wang方法裡簡單的轉換矩陣。首先我們會把訊號分成多個群組且每個群組所分到的訊號都是等間隔,然後再經過我們所設計低複雜度運算的時域次轉換矩陣,最後再把每個群組經過時域次轉換矩陣的輸出全部加起來,就是我們所產生的其中一組要傳送的訊號。我們再由這些訊號裡面找出一組尖峰平均值功率比最低的去傳送。因此我們可以大量減少其運算複雜度且達到降低尖峰平均值功率比的目的,而且也可以找到更多可用的傳送訊號。
    In orthogonal frequency division multiplexing (OFDM) systems, peak-to-average power ratio (PAPR) is one of the major problems. High PAPR could bring serious impact on hardware implementation. Therefore, many solutions for PAPR reduction have been proposed, including the selective mapping (SLM) approach. However, in SLM approach, the computational complexity due to an amount of IFFT operations is considerable. In this work, we proposed a modified SLM approach based on time-domain conversion sub-matrices. First, we divide the OFDM signal into several sub-blocks by grouping the subcarriers with equally-spaced indices. Afterwards, we find out the conversion matrices for each sub-block and obtain the candidate signals by summing up the conversed signals of all sub-blocks. Based on the time-domain conversion sub-matrices, we can reduce the computational complexity significantly. From the simulation results, the performance by the proposed scheme approaches to that by conventional SLM with the computational complexity much less than conventional SLM.


    Chapter 1 1 Introduction 1 Chapter 2 3 OFDM Basics 3 2.1 OFDM system model 3 2.2 Conventional SLM for PAPR Reduction 7 Chapter 3 9 Proposed SLM Approach Based on Time-domain Conversion Sub-matrices 9 3.1 System Model of TCS-SLM for Two Sub-blocks 10 3.2 System Model of TCS-SLM for Four Sub-blocks 17 3.3 Comparison of computational complexity 20 Chapter 4 22 Subband-based Selective Mapping for PAPR Reduction without Side Information in OFDMA Systems 22 4.1 System Model for Sub-band SLM 23 4.2 Channel estimation for Sub-band SLM approach 24 Chapter 5 26 Simulation 26 5.1 Introduction of Simulation parameters 26 5.2 PAPR performance comparison of Proposal-I (two sub-blocks), Proposal-II (four sub-blocks) and Wang’s scheme 27 5.3 PAPR performance of proposed Subband-based Selective Mapping Approach 29 5.4 BER performance of proposed Subband-based Selective Mapping Approach 30 Chapter 6 33 Conclusion 33 Appendix A (The proof of Lemma 1) 34 Appendix B (The proof in Lemma 2) 35 Appendix C (The proof in Lemma 3) 36 Appendix D(The proof in Proposition 4) 39 Appendix E (The proof in Lemma 5) 40 Bibliography 41

    [1] R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications.Boston: Artech House, 2000.
    [2] “Radio broadcasting systems: Digital audio broadcasting (DAB) to mobile, portable and fixed receivers,” ETSI, ETS 300 401, 1.3.2 ed., 2000.
    [3] “Digital video broadcasting (DVB): Framing structure, channel coding and modulation for digital terrestrial television,” ETSI, EN 300 744, 1.3.1 ed., 2000.
    [4] IEEE Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-Speed Physical Layer in the 5GHz Band, IEEE Std. 802.11a-1999, Sep. 1999.
    [5] A. D. S. Jayalath and C. R. N. Athaudage, ‘‘On the PAPR Reduction of OFDM Signals Using Multiple Signal Representation,’’IEEE Communications Letters, Vol. 8, Issue. 7, pp. 425-427, July 2004.
    [6] R. W. Bäuml, R. F. H. Fischer, J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selective mapping,” Electron. Lett., vol. 32, no. 22, pp. 2056-2057, Oct. 1996.
    [7] S. Müller, R. Bäuml, R. Fischer, J. Huber, “OFDM with reduced peak-to-average power ratio by multiple signal representation,” Annals of Telecommunications, vol.52, no.1-2, pp.58-67, 1997.
    [8] M. Breiling, S. H. Müller, and J. B. Huber, “SLM peak-power reduction without explicit side information, ”IEEE Commun. Lett., vol. 5, no. 6, pp. 239-241, June 2001.
    [9] S. H. Müller and J. B. Huber, “OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences,” Electron. Lett., vol. 33, no.5, pp. 368-369, Feb. 1997.
    [10]S. H. Müller and J. B. Huber, “A novel peak power reduction scheme for OFDM,” Proc. 8th IEEE Person. Indoor Mobile Ratio Commun., Heisinki, Finland, vol. 3, pp. 1090-1094, Sep. 1997.
    [11]S. G. Kang, J. G. Kim and E. K. Joo, “A novel subblock partition scheme for partial transmit sequence OFDM,” IEEE Trans. Commun., vol. 45, pp.333-338, 1999.
    [12]L. J. Cimini, Jr., and N. R. Sollenberger, “Peak-to-average power ration reduction of an OFDM signal using partial transmit sequences,” IEEE Commun. Lett., vol. 4, no. 3, pp. 86-88, Mar. 2000.
    [13]C. L. Wang, M. Y. Hsu and Y. Ouyang, “A Low Complexity Peak-to-Average Power Ratio Reduction Technique for OFDM Systems,” IEEE Global Telecommunications Conference, vol. 4, pp. 2375–2379, 2003.
    [14]R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communication, Boston, MA: Aretch House, 2000.
    [15]C.-L. Wang and Y. Ouyang, “Low-complexity selected mapping schemes for peak-to-average power ratio reduction in OFDM systems,” IEEE Transactions on Signal Processing, pp. 4652–4660, 2005.
    [16]G. Lu, P. Wu, and C. Carlemalm-Logothetis, “Enhanced interleaved partitioning PTS for peak-to-average power ratio reduction in OFDM Systems,” Electron. Lett., pp. 983–984, 2006.
    [17]C.-L. Wang and S.-J. Ku, “Novel Conversion Matrices for Simplifying the IFFT Computation of an SLM-Based PAPR Reduction Scheme for OFDM Systems,” IEEE Transactions on Communications, pp. 1903-1907, 2009.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE