研究生: |
林楙翔 Lin, Mao-Hsiang |
---|---|
論文名稱: |
利用反射式兆赫波光譜研究氧化銦錫薄膜與奈米晶鬚之光電特性 Terahertz reflection spectroscopic studies of the optical and electrical properties of indium-tin-oxide thin films and nanowhiskers |
指導教授: |
潘犀靈
Pan, Ci-Ling |
口試委員: |
潘犀靈
Pan, Ci-Ling 齊正中 Chi, Cheng-Chung 賀清華 Her, Tsing-hua 余沛慈 Yu, Pei-chen 和田修 Osamu Wada |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 78 |
中文關鍵詞: | 兆赫波時域光譜 、氧化銦錫薄膜 、氧化銦錫奈米晶鬚 |
外文關鍵詞: | THz-TDS, ITO thin film, ITO nanowhisker |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Indium-tin-oxide (ITO) films are widely employed as transparent electrodes in the thin film silicon solar cell and light emitting diode. On the other hand, the GaAs and silicon photovoltaic solar cell employed ITO nanowhiskers as the conductive antireflective coating. In this work, we have used the transmission and reflection type terahertz-time domain spectroscopy (THz-TDS) to investigate the far-infrared optical and electrical properties of ITO thin films and nanowhiskers.
The ITO films we have investigated were prepared by the direct current reactive magnetron sputtering on fused silica substrates, and the ITO nanowhiskers were deposited onto the high resistivity silicon substrates by the glancing-angle electron-beam evaporation.
For different thicknesses of samples, the complex refractive indices and complex conductivities are determined experimentally by the THz-TDS measurement, and then the scattering times and the plasma frequencies are fitted by Drude-Smith model with the effective medium theory. The carrier concentrations and mobilities are also obtained from the fitted parameters. The mobilities of ITO thin films and ITO nanowhiskers are calculated to be 25.9~60.6 cm^2/Vs and 34.5~128.3 cm^2/Vs, respectively. The carrier concentrations are 〖~〖10〗^20 cm〗^(-3) in film samples and 〖~〖10〗^19 cm〗^(-3) in nanowhisker samples. The scattering times of ITO films are 12~26 fs, while that of the ITO nanowhiskers are 24.49~63.68 fs. In general, the conductivities of ITO thin films are better than ITO nanowhiskers, because the effect of higher carrier concentration for ITO thin films is stronger than the effect of lower electron mobility.
[1] K. L. Chopra, S. Major, and D. K. Pandya, “Transparent conductors: A status review,” Thin Solid Films, vol. 102, no. 1, pp. 1–46, 1983.
[2] C. G. Granqvist and A. Hultaker, “Transparent and conducting ITO films: New developments and applications,” Thin Solid Films, vol. 411, pp. 1–5, 2002.
[3] Eric C. Garnett and Peidong Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc., vol. 130, pp. 9224-9225, 2008.
[4] Michael D. Kelzenberg, Shannon W. Boettcher, Harry A. Atwater and et al., “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nature Materials, vol. 9, pp. 239-244, 2010.
[5] Chia-Hua Chang, Peichen Yu, Min-Hsiang Hsu and et al., “Combined micro- and nano-scale surface textures for enhanced near-infrared light harvesting in silicon photovoltaics,” Nanotechnology, vol. 22, pp. 095201, 2011.
[6] R. F. Bunshah and R. S. Juntz, “Influence of condensation temperature on microstructure and tensile properties of titanium sheet produced by high-rate physical vapor deposition process,” Metallurgical Transactions, vol. 4, pp. 21-26, 1973.
[7] Hisami Yumoto, Jyun Hatano, Hironobu Sato and et al., “Properties and surface morphology of Indium-tin-oxide Films Prepared by electron shower method,” Jpn. J. Appl. Phys., vol. 32, pp. 1204-1209, 1993.
[8] X.-C. Zhang and J. Xu, Introduction to THz Wave Photonics. New York: Springer-Verlag, 2010.
[9] H. Kim, C. M. Gilmore, A. Pique and et al., “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic lightemitting devices,” J. Appl. Phys., vol. 86, no. 11, pp. 6451–6461, 1999.
[10] A. Solieman and M. A. Aegerter, “Modeling of optical and electrical properties of In2O3 : Sn coatings made by various techniques,” Thin Solid Films, vol. 502, pp. 205–211, 2006.
[11] N. Laman and D. Grischkowsky, “Terahertz conductivity of thin metal films,” Appl. Phys. Lett. vol. 93, pp. 051105-1–051105-3, 2008.
[12] Jason B. Baxter and Charles A. Schmuttenmaer, “Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy,” J. Phys. Chem. B, vol. 110, pp. 25229-25239, 2006.
[13] Jiaguang Han, Weili Zhang, Wei Chen and et al., “Terahertz Dielectric Properties and Low-Frequency Phonon Resonances of ZnO Nanostructures,” J. Phys. Chem. C, vol. 111, pp. 13000–13006, 2007.
[14] Charles A. Schmuttenmaer, “Using Terahertz Spectroscopy to Study Nanomaterials,” Terahertz Science and Technology , vol. 1, pp. 1-8, 2008.
[15] T. Bauer, J. S. Kolb, T. Löffler and et al., “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys., vol. 92, no. 4, pp. 2210–2212, 2002.
[16] S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tuneable Fabry–Perot etalon for terahertz radiation,” New J. Phys., vol. 10, no. 3, pp. 033012-1–033012-6, 2008.
[17] D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett., vol.45, pp. 284–286, 1984.
[18] A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang and et al., “Terahertz optical rectification from (110) zinc-blende crystals,” Appl. Phys. Lett., vol. 64, pp. 1324-1326, 1994.
[19] X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett., vol. 56, pp. 1011–1013, 1990.
[20] X.-C. Zhang and D. H. Auston, “Generation of steerable submillimeter waves from semiconductor surfaces by spatial light modulators,” Appl. Phys. Lett., vol. 59, pp. 768–770, 1991.
[21] R. Köhler, A. Tredicucci, F. Beltram, et al., “Terahertz semiconductor-heterostructure laser,” Nature, vol. 417, no. 6885, pp. 156–159, 2002.
[22] Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett., vol. 67, no. 24, pp. 3523–3525, 1995.
[23] Hai-Bo Liu, Hua Zhong, Xi-Cheng Zhang and et al, “Terahertz Spectroscopy and Imaging for Defense and Security Applications,” Proc. IEEE, vol. 95, pp. 1514-1527, 2007.
[24] H. Ahn, Y.-P. Ku, Y.-C. Wang, and et al., “Terahertz spectroscopic study of vertically aligned InN nanorods” Appl. Phys Lett. vol. 91, art. 163105, 2007.
[25] Patrick Parkinson, James Lloyd-Hughes, Qiang Gao and et al., “Transient Terahertz Conductivity of GaAs Nanowires,” Nano Lett. vol. 7, pp. 2162-2165, 2007.
[26] T.-J. Hsueh, H.-Y. Chen, T.-Y. Tsai, and et al., “Si Nanowire-Based Photovoltaic Devices Prepared at Various Temperatures,” IEEE J. Electron device, vol. 31, no. 11, pp. 1275-1277, 2010.
[27] Ching-Wei Chen, Yen-Cheng Lin, Ci-Ling Pan and et al., “Frequency-Dependent Complex Conductivities and Dielectric Responses of Indium-tin-oxide Thin Films from the Visible to the Far-Infrared,” J. IEEE Quantum electronics, vol. 46, no. 12, 2010.
[28] Mourou G, Stancampiano C V, Antonetti A and Orszag A, “Picosecond microwave pulse generation,”Appl. Phys. Lett., vol. 38, no. 6, pp. 470-472, 1981.
[29] P.B. Clapham, M. C. Hutley, “Reduction of lens reflexion by the “moth eye” principle”, Nature, vol. 244, pp. 281-282, 1973.
[30] P.B. Clapham, M. C. Hutley, “The optical properties of “moth eye” antireflection surfaces”, Opt. Acta., vol. 29, pp. 993-1009, 1982.
[31] Peichen Yu, Chia-Hua Chang, Ching-Hua Chiu and et al., “Efficiency Enhancement of GaAs Photovoltaics Employing Antireflective Indium Tin Oxide Nanocolumns,” Advanced Materials, vol. 21, pp. 1618-1621, 2009.
[32] D.H. Auston, K.P. Cheung and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett., vol. 45, no. 3, pp. 284-286, 1984.
[33] Ch. Fattinger, and D. Grischkowsky, “Point source terahertz optics,” Appl. Phys. Lett., vol. 53, pp. 1480-1482, 1988.
[34] N. Sarukura, H. Othtake, S. Izumida, and Z. Liu, “High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics,” J. Appl. Phys., vol. 84, pp. 654-456, 1998.
[35] X.-C. Zhang, Perspectives in Optoelectronics, Ed. By Sudhanshu S. Jha, Would Scientific, 1995.
[36] C. L. Zhang, H. Zhong and L. L. Zhang, “A phase feature extraction technique for terahertz reflection spectroscopy,” Appl. Phys. Lett., vol. 92, pp. 221106 - 221106-3, 2008.
[37] J. T. Darrow, X.-C. Zhang, D. H. Auston and J. D. Morse, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron., vol. 28, pp. 1607-1616, 1992.
[38] S. kono, M. Tani and K. Sakai, “Coherent Detection of mid-infrared radiation up to 60THz with an LT-GaAs photoconductive antenna” IEEE, Proc.- optoelectron, vol. 149, no. 3, pp. 105-109, 2002.
[39] Yun-Shik Lee, Principles of Terahertz Science and Technology, Springer, 2009.
[40] S. G. Park, A. M. Weiner, M. R. Melloch and et al., “High-power narrow-band terahertz generation using large-aperture photoconductors,” IEEE J. Quantum Electron., vol. 35, pp. 1257-1268, 1999.
[41] S. Kono, M. Tani, and K. Sakai, “Ultrabroadband photoconductive detection: Comparison with free-space electro-optic sampling,” Appl. Phys. Lett., vol. 79, pp. 898-900, 2001.
[42] Hai-Bo Liu, Yunqing Chen, X.-C. Zhang and et al., “Detection and identification of explosive RDX by THz diffuse reflection spectroscopy,” Opt. Exp., vol. 14, pp. 415-423, 2006.
[43] Koji Ohta and Hatsuo Ishida, “Comparison Among Several Numerical Integration Methods for Kramers-Kronig Transformation,” Appl. Spectrosc., vol. 42, pp. 952-957, 1988.
[44] D. G. Cooke1, A. N. MacDonald1, A. Hryciw1 and et al., “Transient terahertz conductivity in photoexcited silicon nanocrystal films,” Phys. Rev. B, vol. 73, pp. 193311-193314, 2006.
[45] N. V. Smith, “Classical generalization of the Drude formula for the optical conductivity,” Phys. Rev. B, vol. 64, pp. 155106-6, 2001.
[46] Ioachim Pupeza, Rafal Wilk, and Martin Koch, “Highly accurate optical material parameter determination with THz time-domain spectroscopy,” Opt. Exp., vol. 15, pp. 4335-4350, 2007.
[47] Rafal Wilk, Ioachin Pupeza, Radu Cernat, and Martin Koch, “Highly Accurate THz Time-Domain Spectroscopy of Multilayer Structures,” IEEE J. Quantum Electron, vol. 14, pp. 392-398, 2008.
[48] Erik M. Vartiainen, Yusuke Ino, Ryo Shimano and et al., “Numerical phase correction method for terahertz time-domain reflection Spectroscopy,” J. Appl. Phys., vol. 96, pp. 4171-4175, 2004.
[49] H. Zhong, C.L. Zhang, L.L. Zhang and et al., “A phase feature extraction technique for terahertz reflection spectroscopy,” Appl. Phys. Lett., vol. 92, pp. 221106-221108, 2008.