簡易檢索 / 詳目顯示

研究生: 莊咏錫
Chuang, Yung-His
論文名稱: 轉印燒結二氧化鈦膜至ITO/PET可撓式膠態染料敏化太陽能電池之研究
Investigations on transferring sintered TiO2 film onto ITO/PET substrate for flexible gel-type dye sensitized solar cells
指導教授: 戴念華
Tai, Nyan-Hwa
李紫原
Lee, Chi-Young
口試委員: 戴念華
李紫原
洪傳獻
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 87
中文關鍵詞: 染料敏化太陽能電池膠態電解液可撓式基板
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • I
    摘要
    本實驗將燒結的二氧化鈦轉印至可撓式導電PET基板以製備染料敏化太陽能電池。首先在玻璃表面旋塗一層聚苯乙烯球,再使用刮刀法塗佈二氧化鈦漿料於球層上,將二氧化鈦/聚苯乙烯球/玻璃放入高溫爐中以450oC在空氣中處理30分鐘,成為燒結的二氧化鈦膜。另一方面,使用導電碳膠、導電銀膠、刮刀法二氧化鈦與電泳二氧化鈦為中介層,提高基板與燒結後的二氧化鈦間的附著力,並使用輕壓或摩擦轉印將燒結後的二氧化鈦膜轉置其上,形成燒結二氧化鈦/中介層/ITO/PET結構。
    使用不同中介層的陽極製備可饒式染料敏化太陽能電池,並以太陽光模擬燈量測染料敏化太陽能電池的光電轉換效率,及以電化學阻抗譜儀量探討結構對性能的影響。結果發現,本研究可成功將燒結的二氧化鈦轉印至二氧化鈦中介層/ITO/PET上,且以此製程所得的染料敏化太陽能電池之光電轉換效率為0.75 %;當直接以130oC、100 MPa處理一分鐘的刮刀法二氧化鈦為電極時,即使未經燒結其光電轉換效率亦可提升至1.19 %,此兩種方法的比較將在文章中討論。
    II
    Abstract
    This work reports a method to transfer sintered TiO2 onto ITO/PET flexible electrode for fabricating dye sensitized solar cells. At the first step, TiO2 film, prepared by the doctor-blade (DB) method, was coated onto a glass substrate coated with polystyrene spheres; afterward the as-prepared TiO2/polystyrene sphere/glass was sintered at 450oC in air for 30 min. During the transferring process, various intermediate layers, namely conductive carbon tape, conductive silver paste, EPD TiO2, and DB TiO2 were used to enhance the adhesion between ITO/PET substrate and sintered TiO2 film. The sintered TiO2 was then transferred onto the intermediate layer via a simple pressing (or friction- transfer) method to form TiO2/intermediate layers/ITO/PET structure.
    The current-voltage characteristic and the Nyquist plots of the DSSCs device were measured by solar simulator and electrochemical impedance spectroscopy (EIS), respectively. The proposed method successfully transferred sintered TiO2 on intermediate layers/ITO/PET. The energy conversion effeciency of this device was 0.75 %. Even without sintering, the energy conversion efficiency of the DB TiO2 electrode can be enhanced to 1.19 %, after heat treatment at 130oC under a pressure of 100 MPa for 1 minute.


    IV 總目錄 摘要…………………………………………………………………………I Abstract…………………………………………………………………II 致謝…………………………………………………………………III 總目錄 …………………………………………………………………IV 表目錄…………………………………………………………………VII 圖目錄 ………………………………………………………………VIII 第一章 緒論……………………………………………………………1 1.1 前言……………………………………………………………1 1.2 太陽能電池簡介………………………………………………2 1.3 研究動機………………………………………………………4 第二章 文獻回顧與理論基礎…………………………………………7 2.1染料敏化太陽能電池工作原理………………………………7 2.2染料敏化電池各層組成探討…………………………………8 2.2.1 二氧化鈦陽極電極………………………………………8 2.2.2 表面修飾染劑…………………………………….……11 2.2.3 相對電極(counter electrode)(陰極)……………………13 2.2.4 電解質溶液……………………………………………14 2.3 太陽能電流電壓輸出特性…………………………………16 V 2.4 交流阻抗原理與模擬等效電路……………………………18 2.4.1交流阻抗原理……………………………………………18 2.4.2太陽能電池之模擬等效電路……………………………21 第三章 研究方法與實驗步驟…………………………………………28 3.1實驗藥品與實驗儀器…………………………………………28 3.2 實驗步驟……………………………………………………31 3.2.1電極製作…………………………………………………31 3.2.2電池組裝………………………………………………34 3.3 量測儀器使用方式…………………………………………35 3.3.1光電轉換特性量測………………………………………35 3.3.2 全電池光源下電化學阻抗光譜分析(EIS analysis)……35 3.3.3循環伏安法(Cyclic Voltammetry)………………………36 第四 章 結果與討論……………………………………………………41 4.1 單層PS球排列………………………………………………41 4.2表面形貌之分析………………………………………………43 4.2.1電泳沉積法………………………………………………43 4.2.2刮刀法……………………………………………………44 4.2.3電泳與刮刀法轉印二氧化鈦……………………………44 4.2.4導電銀膠轉印二氧化鈦…………………………………45 VI 4.2.5碳膠轉印二氧化鈦………………………………………46 4.3 各種轉印二氧化鈦層之特性表現…………………………48 4.3.1電泳沉積法………………………………………………48 4.3.2刮刀法……………………………………………………51 4.3.3導電銀膠…………………………………………………53 4.3.4導電碳膠…………………………………………………54 第五章 結論……………………………………………………………79 第六章參考文獻………………………………………………………80 VII 表目錄 表1-1 各類太陽能電池轉換效率………………………………………5 表4-1以濃度2g/L的電泳液,電泳不同次數二氧化鈦薄膜厚度…56 表4-2以濃度2g/L的電泳液,電泳二氧化鈦電極比較電泳不同時間 之表現……………………………………………………………56 表4-3電泳5秒,次數兩次對二氧化鈦薄膜加壓加熱之表現……57 表4-4燒結二氧化鈦層在玻璃上之厚度…….…….…………………57 表4-5刮刀法二氧化鈦層對轉印及後處理之表現…………………58 VIII 圖目錄 圖1-1 現今能源使用比例………………………………………………6 圖1-2 太陽能電池分類…………………………………………………6 圖2-1 染料敏化電池理論工作原理圖……..…………………………23 圖2-2 染料敏化電池實際工作原理圖.…….…………………………23 圖2-3 染劑對TiO2及電解液能階示意圖……….……………………24 圖2-4 N3、N719、Complex 3染料分子結構………………………24 圖2-5 (1)N3、(2)N719、(3)Complex 3染料的IPCE………………25 圖2-6 染料透過Carboxyl groups與TiO2表面形成Ester linkages...25 圖2-7 Nyquist plots對應等效電路電阻電容……………………… 26 圖2-8等效電路模擬圖……………………………………………… 26 圖2-9簡化等效電路模擬圖………………………………………… 27 圖3-1二氧化鈦粉末之XRD…………..…………………………… 37 圖3-2熱壓機………………………………………………………… 37 圖3-3實驗式自組裝之Sputter金屬濺鍍系統…..………………… 38 圖3-4染料敏化太陽能電池之製作流程圖………………………… 39 圖3-5太陽光模擬光源及電源供應器……………………………… 40 圖3-6恆電位儀……………………………………………………… 40 IX 圖4-1 轉速為800 rpm具不同濃度PS球之SEM圖:……………… (a), (b) 7.0 wt%;(c), (d)7.1 wt%;(e), (f) 7.2 wt%;(g), (h) 7.3 wt%; (i), (j) 7.4 wt%;(k), (l) 7.5 wt%;(n), (m) 7.6 wt%.;............. (o), (p) 7.7 wt%;(q), (r) 7.8 wt%…........….……………………61 圖 4-2 濃度7.25 wt% PS球於不同轉速之SEM圖:…....................…… (a), (b) 800rpm;(c), (d) 700 rpm;(e), (f) 600 rpm…..…………62 圖4-3電泳沉積法二氧化鈦之SEM(a), (b)電泳5秒兩次;. . . (c), (d)電泳5秒2次作加壓處理;.......................... (e), (f)電泳5秒2次作加壓加熱處理…………………………63 圖4-4刮刀法二氧化鈦之SEM(a), (b)未處理;.. . . ......... (c), (d)加壓加熱處理……………...……………………………64 圖4-5 (a),(b)轉印二氧化鈦至電泳法所形成的二氧化鈦之SEM (c), (d)轉印二氧化鈦至刮刀法所形成的二氧化鈦之SEM…65 圖4-6不同倍率導電銀膠轉印所形成的二氧化鈦之SEM…66 圖4-7不同倍率下刮刀法燒結二氧化鈦之SEM……………67 圖4-8不同倍率下導電碳膠轉印所形成的二氧化鈦之SEM.68 圖4-9燒結二氧化鈦四氯化鈦水溶液處理後...................... 之SEM………………………………………………………69 X 圖4-10經四氯化鈦水溶液處理後,使用碳膠轉印後所形成的........... 二氧化鈦之SEM……………………………………………70 圖4-11電泳法二氧化鈦電極比較電泳不同時間之電池表現…..71 圖4-12電泳法二氧化鈦電極比較電泳不同時間之全電池照光下…. EIS分析………………………………………………………71 圖4-13電泳二氧化鈦電極比較電泳不同時間之全電池照光下…… Bode phase……………………………………………………72 圖4-14電泳法二氧化鈦電極對加壓加熱不同條件下電池之電池… 表現……………………………………………………………72 圖4-15電泳法二氧化鈦電極對加壓加熱不同條件下之全電池照. 光下EIS分析…………………………………………………73 圖4-16電泳二氧化鈦電極對加壓加熱得不同條件之全電池照 光下Bode phase………………………………………………73 圖4-17電泳法二氧化鈦電極有無轉印之電池表現……………74 圖4-18電泳法二氧化鈦電極有無轉印之全電池照光下………… EIS表現……………………………………………………74 圖4-19電泳法二氧化鈦電極有無轉印之全電池照光下………… Bode phase……………………………………………………75 圖4-20刮刀法二氧化鈦電極經不同處理過後之電池表現……75 XI 圖4-21刮刀法二氧化鈦電極經不同處理過後之全電池照光下…… EIS表現……………………………………………………76 圖4-22銀膠轉印二氧化鈦電極照光之電池表現………………76 圖4-23銀膠轉印二氧化鈦電極未照光之電池表現……………77 圖4-24銀膠轉印二氧化鈦電極之循環伏安……………………77 圖4-25碳膠轉印二氧化鈦電極照光與未照光之電池表現……78 圖4-26 四氯化鈦水溶液溶液處理燒結二氧化鈦後,經碳膠轉印之 電極在照光與未照光下之電池表現………………………78

    參考文獻
    [1] J. L. Sawin, E. Martinot, et al, “Renewables 2010 Global Status Report”, REN21 (2011).
    [2] P. Puig, M. Jofra, “Energia renovables para todos”, Energia solar termica.
    [3] M.Gratzel, “Photo electrochemical cell”, Nature, Vol. 414, 338-344 (2001).
    [4] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, “Solar cell efficiency tables (version 37)”, Progess in Photovoltaics: Research and Applications , Vol. 19, 84-92 (2011).
    [5] Md. K. Nazeeruddin , E. Baranoff, M. Gratzel, “Dye-sensitized solar cells :A brief overview”, Solar Energy, Vol. 85(6) , 1172-1178 (2011).
    [6] X. T. Zhang, H. W. Liu, T. Taguchi, Q. B. Meng, O. Sato, A. Fujishima, “Slow interfacial charge recombination in solid-state dye-sensitized solar cell using Al2O3-coated nanoporous TiO2 films”, Solar Energy Material and Solar Cells, Vol. 81(2) , 197-203 (2004).
    [7] Y. Saito, S. Kambe, T. Kitamura, Y. Wada, S. Yanagida, “Morphology control of mesoporous TiO2 nanocrystalline films for performance of dye-sensitized solar cells”, Solar Energy Material and Solar Cells, Vol. 83(1), 1-13 (2004).
    [8] J. H. Yoon, S.R. Jang, R. Vittal, J. Lee, K.J. Kim, “TiO2 nanorods as additive to TiO2 film for improvement in the performance of dye-sensitized solar cells”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 180(1-2), 184-188 (2006).
    [9] K. M. Lee, V. Suryanarayanan, K. C. Ho, “A study on the electron transport properties of TiO2 electrodes in dye-sensitized solar cells”, Solar Energy Material and Solar Cells, Vol. 91(15-16), 1416-1420 (2007).
    [10] P. Yao, L. Wang, E. Chiang, K. Ho, Y. Chen, “Nanocrystalline TiO2 for Porphyrin-Sensitized Solar Cells: A Preliminary Study”, Journal of Science and Engineering Technology, Vol. 4(1), 35-42 (2008).
    [11] H. W. Chen, C. Y. Hsu, J. G. Chen, K. M. Lee, C. C. Wang, K. C. Huang, K. C. Ho, “Plastic dye-sensitized photo-supercapacitor using electrophoretic deposition and compression methods”, Journal of Power Sources, Vol. 195(18), 6225-6231 (2010).
    [12] P. Sawunyama, A. Yasumori, K. Okada, “The Nature of Multilayered TiO2-based photocatalytic films prepared by a sol-gel process”, Materials Research Bulletin, Vol. 33(5) , 795-801 (1998).
    [13] S. B. Amor, G. Baud, J. P. Besse, M. Jacquet, “Elaboration and characterization of titania coatings”, Thin Solid Films, Vol. 293(1-2), 163-169 (1997).
    [14] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Formation of titanium oxide nanotube”, Longmuir, Vol. 14(12), 3160-3163 (1998).
    [15] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Titania nanotubes prepared by chemical processing”, Advanced Materials, Vol. 11(15), 1307-1311 (1999).
    [16] Y. X. Zhang, G. H. Li, Y. X. Jin, Y. Zhang, J. Zhang, L. D. Zhang, “Hydrothermal synthesis and photoluminescence of TiO2 nanowires”, Chemical Physics Letters, Vol. 365(3-4), 300-304 (2002).
    [17] A.D. Pasquier, M. Stewart, T. Spitler, M. Coleman, “Aqueous coating of efficient flexible TiO2 dye solar cell photoanodes”, Solar Energy Material and Solar Cells, Vol. 93(4), 528-535 (2009).
    [18] L. Yang, L. Q. Wu, M. X. Wu, G. Xin, H. Lin, T. L. Ma, “High-efficiency flexible dye-sensitized solar cells fabricated by a novel friction-transfer technique” , Electrochemistry Communications, Vol. 12(7), 1000-1003 (2010).
    [19] P. J. Cameron, L. M. Peter, “Characterization of Titanium Dioxide Blocking Layers in Dye-Sensitized Nanocrystalline Solar Cells”, The Journal of Physical Chemistry B, Vol. 107(51), 14394-14400 (2003).
    [20] A. Burke, S. Ito, H. Bach, J. Kwiatkowski, M. Gratzel, “The function of a TiO2 compact layer in dye sensitized solar cells incorporating Planar organic dyes”, Nano Letters, Vol. 8(4), 977-981 (2008).
    [21] S. Ito, P. Liska, P. Comte, R. Charvet, P. Pechy, U. Bach, L. Schmidt-Mende, S. M. Zakeeruddin, A. Kay, M. K. Nazeeruddin, M. Gratzel, ” Control of dark current in photoelectrochemical (TiO2/I--I3-) and dye-sensitized solar cells”, Chemical Communications, 4351–4353 (2005).
    [22] M.Gratzel, “Solar energy conversion by dye-sensitized photovoltaic cells”, Inorganic Chemistry, Vol. 44(20), 6842 -6851 (2005).
    [23] Md. K. Nazeeruddin, S.M. Zakeeruddin, J.J. Lagref, P. Liska, P. Comte, C. Barolo, G. Viscardi , K. Schenk , M. Gratzel, “Stepwise assembly of amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cell”, Coordination Chemistry Reviews, Vol. 248(13-14), 1317-1328 (2004).
    [24] H. Zabri, F. Odobel, S. Altobello, S. Caramori, C.A. Bignozzi, “Efficient osmium sensitizers containing 2,2’-bipyridine-4,4’-bisphosphonic acid ligand”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 166(1-3), 99-106 (2004).
    [25] G. J. Meyer, “Efficient light-to-electrical energy conversion: nanocrystalline TiO2 films modified with inorganic sensitizers”, Journal of chemical education, Vol. 74(6), 652-656 (1997).
    [26] Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Gratzel, “Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell”, The Journl of Physical Chemistry B, Vol. 107(34), 8981-8987 (2003).
    [27] Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, H. Li, W. Song, L. Chen, Q Meng, “Application of carbon materials as counter electrodes of dye-sensitized solar cells”, Electrochemistry Communications, Vol. 9(4), 596-598 (2007).
    [28] K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J. Nakamura, Kazuhiko Murata, “High-performance carbon counter electrode for dye-sensitized solar cells”, Solar Energy Material and Solar Cells, Vol. 79(4), 459–469 (2003).
    [29] T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. H. Baker, P. Comte, P. Pechy, M. Gratzel, “Highly efficient dye-sensitized solar cells based on carbon black counter electrodes”, Journal of The Electrochemical Society, Vol. 153(12), A2255- A2261 (2006).
    [30] G. Tsekouras, A. J. Mozer, G. G. Wallace, “Enhanced performance of dye sensitized solar cells utilizing platinum electrodeposit counter electrodes”, Journal of The Electrochemical Society, Vol. 155(7), K124-K128 (2008).
    [31] C. H. Yoon, R. Vittal, J. Lee, W. S. Chae, K. J. Kim, “Enhanced performance of a dye-sensitized solar cell with an electrodeposited-platinum counter electrode”, Electrochimica Acta, Vol. 53(6), 2890-2896 (2008).
    [32] N. Papageorgiou, W. F. Maier, M. Gratzel, “An iodine/triiodide reduction electrocatalyst for aqueous and organic media”, Journal of The Electrochemical Society, Vol. 144(3), 876-884 (1997).
    [33] M.Gratzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 164(1-3), 3-14 (2004).
    [34] J. H. Wu, S. C. Hao, Z. Lan, J. M. Lin, M. L. Huang, Y. F. Huang, L. Q. Fang, S. Yin, T. G. Sato, “A thermoplastic gel electrolyte for stable quasi-solid-state dye-sensitized solar cells”, Advanced Functional Materials, Vol. 17(15), 2645-2652 (2007).
    [35] L. Yang, Z. Zhang, S. Fang, X. Gao, M. Obata, “Influence of the preparation conditions of TiO2 electrodes on the performance of solid-state dye-sensitized solar cells with CuI as a hole collector”, Solar Energy, Vol. 81(6), 717-722 (2007).
    [36] H. Kusama, H. Arakawa, “Influence of pyrimidine additives in electrolytic solution on dye-sensitized solar cell performance”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 160(3), 171-179 (2003).
    [37] H. Kusama, H. Arakawa, “Influence of benzimidazole additives in electrolytic solution on dye-sensitized solar cell performance”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 162(2-3), 441-448 (2004).
    [38] F. Nour-Mohammadi, H. T. Nguyen, G. Boschloo, T. Lund, “An investigation of the photosubstitution reaction between N719-dyed nanocrystalline TiO2 particles and 4-tert-butyl-pyridine”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 187(2-3), 348-355 (2007).
    [39] G. Boschloo, L. Haggman, A. Hagfeldt, “Quantification of the effect of 4-tert- butylpyridine addition to I-/I3- redox electrolytes in dye-sensitized nanostructure TiO2 solar cells”, The Journl of Physical Chemistry B, Vol. 110(26), 13144-13150 (2006).
    [40] H. T. Nguyen, H. M. Ta, T. Lund, “Thermal thiocyanate ligand substitution kinetics of the solar cell dye N719 by acetonitrile, 3-methoxypropionitrile, and 4-tert-butylpyridine”, Solar Energy Material and Solar Cells, Vol. 91(20), 1934-1942 (2007).
    [41] Y. Liu, A. Hagfeldt, X.R. Xiao, S.E. Lindquist, “Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell”, Solar Energy Material and Solar Cells, Vol. 55(3), 267-281 (1998).
    [42] D.F. Watson, G.J. Meyer, “Cation effects in nanocrystalline solar cells”, Coordination Chemistry Reviews, Vol. 248(13-14), 1391-1406 (2004)
    [43] A. J. Bard, L. R. Faulkner, “Electrochemical methods: fundamentals and applications-2nd ed.”, John Wiley, New York, (2001).

    [44] C. Longo, A. F. Nogueira, M D. Paoli, “Solid-State and Flexible Dye-Sensitized TiO2 Solar Cells: a Study by Electrochemical Impedance Spectroscopy”, The Journl of Physical Chemistry B, Vol. 106(23), 5925-5930 (2002).
    [45] Q. Wang, J. E. Moser, M. Gratzel, “Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells”, The Journl of Physical Chemistry B, Vol. 109(31), 14945-14953 (2005).
    [46] N. Koide, Y. Chiba, T. Mitate, “Modeling of an equivalent circuit for dye-sensitized solar cells”, Applied Physics Letters, Vol. 84(13), 2433-2435 (2004).
    [47] V. Yong, S. T. Ho, Robert P. H. Chang, “Modeling and simulation for dye-sensitized solar cells”, Applied Physics Letters, Vol. 92(14), 143506- 143506-3 (2008).
    [48] N. Koide, A.Islam, Y. Chiba, L. Han, “Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 182(3), 296-305 (2006).
    [49] J. R. Macdonald, “Impedance spectroscopy”, Wiley, New York, (1987).
    [50] A. Hauch, A. Georg, “Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cell”, Electrochimica Acta, Vol. 46(22), 3457-3466 (2001).
    [51] I. Zhitomirsky, “Electrolytic TiO2-RuO2 deposits”, Journal of Materials Science, Vol. 34(10), 2441-2447 (1999).
    [52] C. P. Hsu, K. M. Lee, J. T. W. Huang, C. Y. Lin, C. H. Lee, L. P. Wang, S. Y. Tsai, K. C. Ho, “EIS analysis on low temperature fabrication of TiO2 porous films for dye-sensitized solar cells”, Electrochemistry Communications, Vol. 53(25), 7514-7522 (2008).
    [53] C. Yang, Y. T. Xie, M. F. Yuen, B. Xu, B. Gao, X. Xiong, C. P. Wong, “Silver Surface Iodination for Enhancing the Conductivity of Conductive Composites”, Advanced Functional Materials, Vol. 20(16), 2580-2587 (2010).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE