研究生: |
張家勤 Chang, Chia-Chin |
---|---|
論文名稱: |
結合反應曲面法、類神經網路與基因演算法於觸控面板雷射切割製程參數最佳化 Combining Response Surface Method, Neural Networks and Genetic Algorithms for Optimizing the Parameter Design of Touch Panel Laser Cutting Process |
指導教授: |
蘇朝墩
Su, Chao-Ton |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 64 |
中文關鍵詞: | 雷射切割 、反應曲面法 、倒傳遞類神經網路 、基因演算法 |
外文關鍵詞: | Laser cutting, Response Surface Method, Backpropagation Neural Network, Genetic Algorithms |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在競爭激烈的觸控面板(Touch Panel)產業中,各面板廠紛紛投入更高世代技術生產,以符合市場需求及降低生產成本。由於生產設備投入的資金非常龐大,必須有效的控制生產成本、增加生產效率、提高生產品質,才能在競爭激烈的環境中生存下來。雷射切割技術為觸控面板製程中一項關鍵製程,若是因為切割製程的品質不良而造成產品報廢,前段製程耗時又高成本的生產投入將會付諸流水。為了獲得高良率和維持應有的生產效益,雷射切割製程的控制能力實為各家廠商極欲提昇的生產技術之一。
在極具複雜的雷射切割製程中,影響其產出的製程參數眾多,如果僅依據工程師經驗來判斷其設定值,可能導致製程不穩定而造成不良率提高。本研究針對雷射切割製程參數最佳化提出一系統性的求解程序,首先以迴歸分析與工程知識判斷重要因子,再以反應曲面法(Response Surface Method,RSM)進行實驗設計,最後結合倒傳遞類神經網路(Backpropagation Neural Network,BPN)和基因演算法(Genetic Algorithms,GAs)找尋出雷射切割製程最佳參數組合。透過實際個案研究發現本研究提出之方法可大幅降低雷射切割製程的不良率,由原始的33 % 降至0.3 %。此外,相較於其他參數最佳化之方法,本研究提出之方法有較佳的改善效果。
[1] 蘇朝墩,2008,類神經網路及其應用,上課教材。
[2] 葉怡成,2003,類神經網路模式應用與實作,儒林圖書公司。
[3] 蘇朝墩,2002,品質工程,中華民國品質學會。
[4] 傅承祖等,2007,LCD面板雷射切割技術量產化因素探討,機械工業雜誌,第292期,pp. 91-99.
[5] 林于中、蔡偉崙,2009、FPD玻璃基板雷射切割技術概況,機械工業雜誌,第311期,pp. 43-55.
[6] 黃書政、張炳揚,1997,肉雞屠體最適化噴洗條件之探討,中國畜牧學會會誌,26 (4),pp. 471-481。
[7] 林英傑,2002,多目標考量下之光造形製程參數最佳化研究,逢甲大學工業工程學系碩士論文。
[8] 戴金琪,2003,以反應曲面方法改善銅導線晶圓封裝之銲線製程問題,元智大學工業工程與管理學系碩士論文。
[9] 陳夢倫,2003,積層陶瓷電容印刷製程機器參數最佳化之研究,成功大學製造工程研究所碩士論文。
[10] Myers, R. H., Montgomery, D. C., 2002, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 2nd edition, John Wiley and Sons, New York .
[11] Goldberg, D. E., 1989, Genetic Algorithm in Search, Optimization and Machine Learing, Addison-Wesley, New York.
[12] Dubey, A. K. and Yadava, V., 2008, “Multi-objective Optimisation of Laser Beam Cutting Process, ” Optics and Laser Technology, Vol. 40, Issue.3, pp. 562-570.
[13] Widrow, B., Winter, R. G. and Baxter, R. A., 1987, “Learning Phenomena in Layered Neural Networks, ” Proceedings of the IEEE First Annual International Conference on Neural Networks, pp.411-429.
[14] Oktem, H., Erzurumlu, T. and Kurtaran, H., 2005, “Application of Response Surface Methodology in the Optimization of Cutting Conditions for Surface Roughness,” Journal of Materials Processing Technology, Vol. 170, Issue.1-2, pp. 11-16.
[15] Su, C. T. and Chiang, T. L., 2002, “Optimal Design for a Ball Grid Array Wire Bonding Process Using a Neuro-Genetic Approach,” IEEE Transaction on Electronics Packaging Manufacturing, Vol. 25, No. 1, pp. 13-18.
[16] Huang, C. C. and Tang, T. T., 2006, “Parameter Optimization in Melt Spinning by Neural Networks and Genetic Algorithms,” The International Journal of Advanced Manufacturing Technology, Vol. 27, No.11-12, pp.1113-1118.
[17] Chou, C. J., Yu, F. J. and Su, C. T., 2008, “Combining Neural Networks and Genetic Algorithms for Optimizing the Parameter Design of Inter-Metal Dielectric Layer,” Management Track within WiCOM: Engineering, Services and Knowledge Management, Dalian, China, pp.1-4.
[18] Su, C. T. and Chiang, T. L., 2002, “Optimizing the IC Wire Bonding Process Using a Neural Networks/Genetic Algorithms Approach,” Journal of Intelligent Manufacturing, Vol. 14, No.2, pp.229-238.
[19] Cook, D. F., Ragsdale, C. T. and Major, R. L., 2000, “Combining a Neural Network with a Genetic Algorithm for Process Parameter Optimization,” Engineering Application of Artificial Intelligence, Vol. 13, issue.4, pp.391-396.
[20] Hasan, K., Babur, O. and Tuncay, E., 2005, “Warpage Optimization of a Busceiling Lamp Base Using Neural Network Model and Genetic Algorithm,” Journal of Materials Processing Tech, Vol. 169, issue.2, pp.314-319.
[21] Shi, F., Lou, Z. L., Lu, J. G. and Zhang, Y. Q., 2003, “Optimization of Plastic Injection Molding Process with Soft Computing,” International JournalAdvanced Manufacturing Technology, Vol. 21, pp. 656–661.