簡易檢索 / 詳目顯示

研究生: 李長興
Lee, Chang-Hsing
論文名稱: 傳遞至中壓系統的快速暫態過電壓之模擬與分析
Simulation and Analysis of the Very Fast Transient Overvoltage in Medium Voltage Systems
指導教授: 陳士麟
Chen, Shi-Lin
潘晴財
Pan, Ching-Tsai
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 中文
論文頁數: 188
中文關鍵詞: 快速暫態過電壓氣封絕緣開關場電磁暫態程式
外文關鍵詞: Very Fast Transient Overvoltage, Gas-Insulated Substation, ElectroMagnetic Transient Program
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 快速暫態過電壓(Very Fast Transient Overvoltage, VFTO)係為特高壓氣體絕緣開關場(Gas Insulated Substation, GIS)中常見的開關暫態現象,其特性為它的上升波前時間僅在奈秒範圍內。VFTO對設備絕緣之危害,除了它的峰值可能超過絕緣水準外,主要為快速上升的波前會造成設備絕緣內電場的不均勻分佈,而致絕緣材料會有局部的過電壓,進而加速絕緣材料的老化;此外,它的高頻暫態可能造成電磁干擾,導致控制設備的誤動作。對於電力變壓器二次側之設備,因為阻抗匹配的關係,傳遞至變壓器二次側的VFTO一般認為沒有破壞能力。基此,VFTO的相關研究多侷限在GIS本體或GIS週圍與GIS直接相連接的設備,甚少探討傳遞至電力變壓器二次側的VFTO。
    然而,少數現場經驗顯示:在特高壓發電廠的中壓系統中,部份設備的故障疑與特高壓GIS之操作有關。此外,作者亦曾於民國91年於台灣電力公司第三核能發電廠之4.16 kV系統測得VFTO之波形,顯示VFTO確實會傳遞至中壓系統。基此,本文遂以中壓系統的VFTO為研究主題,進行量測與模擬分析。
    受限於模擬軟體電磁暫態程式的功能限制,實無法以奈秒等級之模擬時距模擬開關動作全程之暫態現象。基此,為分析VFTO的影響,多數研究採用單一次再襲模擬的方式,進行最嚴苛之VFTO的評估,例如以2.0標么之極間崩潰電壓為條件。然而,前述核三廠之現場量測以及本研究後續之模擬顯示,中壓系統的VFTO特性不單與極間崩潰電壓有關,尚與開關動作全程特性相關。基此,本研究發展方法,得以模擬隔離開關之全程動作。本研究獲得之成果摘要如下:
    1、藉由元件特性分析,對模擬所需之模型提出注意事項,並提出三相系統之DS動作全程暫態模擬的方法,包括:建議適當的模擬時距,並提出高頻恢復因數俾修正以較大模擬時距所獲得的最大突波峰值之模擬結果;
    2、分析中壓系統之VFTO的模擬結果,歸納出中壓系統之VFTO的特性:高匝比變壓器的電容移行、全程多次再襲過程中發生再襲所引起的振盪波疊加於下次再襲波形的波形疊加效應、三相系統的三相互耦效應、再襲電弧之持續時間、DS啟閉特性等;
    3、模擬DS操作時可能出現的不同動作角度,據以統計分析中壓系統之VFTO的分佈特徵,包含上述的全程多次再襲、三相互耦等特性;
    4、整理多次的現場量測經驗,對中壓系統之VFTO量測提出建議。


    The very fast transient overvoltage (VFTO) is a common transient phenomenon caused by the switching operation in the extra-high-voltage (EHV) gas insulated substation (GIS), and is characterized by its fast rising wavefront within nanoseconds. Besides the peak of VFTO higher than the breakdown voltage of insulation material, the main affection of VFTO on the equipments is the fast rising wavefront, causing the non-uniform electric field inside the insulation material, then leading the partial overvoltage inside the insulation material, and resulting in the accelerating aging of the insulation material. Furthermore, the very fast transient may cause electromagnetic interference and result in the malfunction of control instruments. As for the equipments in the secondary side of power transformer, the VFTO is thought to be small and less dangerous due to the mismatch of impedance. Therefore, most researches involving VFTO usually focus on the affection of VFTO on the GIS itself, and the equipments adjacent GIS or directly connected to GIS. Hence, there are few researches dealing with the VFTO in the secondary side of power transformer.
    However, a few field experiments showed that some root causes of medium voltage events were suspected to be the switching surge of GIS operation. Moreover, the authors measured the VFTO in 4.16 kV system in the 3rd nuclear power plant of Taipower at 2002, and the VFTO was, hence, confirmed to be able to transmit into medium voltage system. Therefore, this thesis takes the analysis of VFTO in medium voltage system as the major topic by simulating and measuring the VFTO in medium voltage system.
    Limited by the capabilities of software, ElectroMagnetic Transient Program (EMTP), it is impossible to simulate the transient phenomena of whole process of switching operation by the 1 ns time step. Therefore, most literatures estimated the affection of VFTO by the single strike simulation with the most series situation, such as 2.0 PU inter-contact breakdown voltage. However, according to the field measurement results in the 3rd nuclear power plant and the study of this thesis, the characteristics of VFTO in medium voltage system are not only affected by the inter-contact breakdown voltage, but also affected by the properties of whole process. Hence, this thesis is devoted to develop simulation method to simulate the whole process phenomena of disconnect switch (DS). This thesis gets the following results:
    1. By the analysis of components’ characteristics, the notice is addressed for the simulation, and the simulation method for whole process phenomena of switching operation is proposed, which includes the proposition of an adequate simulation timestep and the high frequency recovery factor (HFRF) to adjust the maximum peak of VFTO simulated at this timestep;
    2. By analysis of the simulation results, the properties of the VFTO transmitting into medium voltage system are characterized: the capacitive transfer of high turn-ratio transformer, the superposition effect of the oscillation caused by former restike superimposing into the following restrike, the three phases coupling caused by three-phase system, the duration of arcing time, and the properties of DS opening/closing;
    3. By simulating the DS operating at different operation angle, the property of VFTO in medium voltage system is discussed including aforementioned factors;
    4. By the several field measurement results, the recommendation is made for the measuring of VFTO in the medium voltage system.

    中文摘要 I 英文摘要 III 誌謝詞 VI 目錄 VIII 圖目錄 XII 表目錄 XVIII 第一章 序論 1 1-1 研究背景 1 1-2 研究目的 8 1-3 國內外研究情形 8 1-4 研究重點 12 1-5 各章摘要 13 第二章 文獻回顧 15 2-1 前言 15 2-2 再襲機制及其影響因素介紹 16 2-3 VFTO模擬與量測分析 25 2-4 VFTO特性統計 32 2-5 本章結論 34 第三章 現場量測 36 3-1 前言 36 3-2 核三廠之系統架構及量測架構 37 3-3 中壓系統之VFTO的現場量測 40 3-3-1 第一次量測(民國90年12月) 40 3-3-2 第二次量測(民國91年5月) 42 3-3-3 第三次量測(民國91年11月) 46 3-4 多次再襲模型之參數量測規劃 50 3-5 本章結論 52 第四章 數值分析方法 54 4-1 前言 54 4-2 元件適用性分析 56 4-2-1 變壓器模型之選擇 57 4-2-2 匯流排模型評估 62 4-2-3 再襲模型選擇 71 4-2-4 其它元件分析(電弧電阻、開關、GIS、套管、T接點) 73 4-3 模擬時距之比較與高頻恢復因數之推導 80 4-4 多次再襲模擬 85 4-5 本章結論 86 第五章 中壓系統之VFTO模擬 88 5-1 前言 88 5-2 高頻恢復因數之評估 89 5-3 單相單次再襲模擬 95 5-4 單相多次再襲模擬 100 5-5 三相多次再襲模擬 109 5-6 模擬結果比較(VFTO現象之比較) 122 5-7 本章結論 128 第六章 中壓系統之VFTO的特性分析 130 6-1 前言 130 6-2 電容移行效應分析 131 6-3 波形疊合效應分析 135 6-4 三相互耦效應分析 138 6-5 電弧持續時間對VFTO峰值之影響分析 140 6-6 DS之啟斷與閉合特性分析 142 6-7 陷阱電壓對VFTO峰值之影響分析 144 6-8 本章結論 145 第七章 結論 146 7-1 前言 146 7-2 現場量測 147 7-3 數值分析方法 148 7-4 中壓系統之VFTO模擬比較 150 7-5 中壓系統之VFTO特性分析 152 7-6 未來研究方向 153 參考文獻 155 附錄A 模型參數 164 附錄B 原始程式碼 171

    [1] CIGRE Working Group 33/13-09, “Very Fast Transient Phenomena Associated with Gas Insulated Substations”, International Conference on Large High Voltage Electric Systems, Aug-Sep, 1988.
    [2] S. Okabe, M. Kan, and T. Kouno, “Analysis of Surges Measured at 550 kV Substations”, IEEE Trans. Power Delivery, vol. 6, no. 4, Oct. 1991, pp. 1462 – 1468.
    [3] N. Fujimoto, and S. A. Boggs, “Characteristics of GIS Disconnector-Induced Short Risetime Transients Incident on Externally Connected Power System Components”, IEEE Trans. Power Delivery, vol. 3, no. 3, July 1988, pp. 961-970.
    [4] J. Meppelink, K. Diederich, K. Feser, and W. Pfaff, “Very Fast Transients in GIS”, IEEE Trans. Power Delivery, vol. 4, no. 1, Jan. 1989, pp. 223-233.
    [5] S. Yanabu, H. Murase, H. Aoyagi, H. Okubo, and Y. Kawaguchin, “Estimation of Fast Transient Overvoltage in Gas-Insulated-Substation”, IEEE Trans. Power Delivery, vol. 4, no. 4, Nov. 1990, pp. 1875-1882.
    [6] S. A. Boggs, F. Y. Chu, N. Fujimoto, A. Krenicky, A. Plessel, and D. Schlich, “Disconnect Switch Induced Transients and Trapped Charge in Gas-induced Substations”, IEEE Trans. Power Apparatus and Systems, vol. PAS-101, no. 10, Oct. 1982, pp. 3593-3602.
    [7] W. Y. Zhang, B. Z. Shi, and Y. C. Qiu, “Very Fast Transient Overvoltages in GIS”, in Proc. International Conference on Power System Technology, Aug. 18-21, 1998, pp. 212-214.
    [8] S. Ogawa, E. Haginomori, S. Nishiwaki, T. Yoshida, and K. Terasaka, “Estimation of Restriking Transient Overvoltage on Disconnecting Switch for GIS”, IEEE Trans. Power Systems, vol. PWRD-1, no. 2, April 1986, pp. 95-102.
    [9] A. Schutte and H. Rodrigo, “Transient Phenomena due to Disconnect Switching in High Voltage Substations”, in Proc. 17th International Symposium on High Voltage Engineering, Aug. 22-27, 1999, pp. 258-261.
    [10] W. Jakel, and A. B. Muller, “Switching Transient Levels Relevant to Medium Voltage Switchgear and Associated Instrumentation”, in Proc. International Conference and Exhibition on ElectroMagnetic Compatibility, June 12-13, 1999, pp. 35-40.
    [11] Z. Haznadar, S. Carsimamovic, and R. Mahmutcehajic, “More Accurate Modeling of Gas Insulated Substation Components in Digital Simulations of Very Fast Electromagnetic Transients”, IEEE Trans. Power Delivery, vol. 7, no. 1, Jan. 1992, pp. 434-441.
    [12] C. Ramirez and P. A. Calva, “Simulation of Electric Power Circuit Breakers in the EMTP Application to Reactor Bank Switching and Short Line Fault”, in Proc. Annual Conference on Electrical Insulation and Dielectric Phenomena, Oct. 14-16, 2001, pp. 660-664.
    [13] P. Rohrbach, M. Lacorte, J. C. Mendes, and C. M. Junior, “550 kV GIS VFT Simulations as a Support for Transformer Design”, in Proc. International Conference on Power System Transients, June 24-28, 2001, PP. 1-4.
    [14] A. Ardito, R. Iorio, G. Santagostino, and A. Porrino, “Accurate Modeling of Capacitively Graded Bushing for Calculation of Fast Transient Overvoltages in GIS”, IEEE Trans. Power Delivery, vol. 7, no. 3, July 1992, pp. 1316-1327.
    [15] S. Singha and M. J. Thomas, “Toepler’s Spark Law in a GIS with Compressed SF6-N2 Mixture”, IEEE Trans. Dielectrics and Electrical Insulation, vol. 10, no. 3, June 2003, pp. 498-505.
    [16] S. A. Qureshi and T. A. Shami, “Effects of the GIS Parameters on Very Fast Transient Overvoltages”, in Proc. Electrotechnical Conference, April 12-14, 1994, pp. 960-963.
    [17] M. Mohana Rao, M. Joy Thomas, and B. P. Singh, “Frequency Spectrum Analysis of Fast Transient Currents (FTC) due to Switching Operations in a 245 kV GIS”, in Proc. Transmission and Distribution Conference and Exhibition, Oct. 6-10, 2002, pp. 2239-2243.
    [18] R. P. P. Smeets, W. A. van der Linden, M. Achterkamp, G. C. Damstra, and E. M. de Meulemeester, “Disconnector Switching in GIS: Three-Phase Testing and Phenomena”, IEEE Trans. Power Delivery, vol. 15, no. 1, Jan. 2000, pp. 122 – 127.
    [19] W. Buesch, J. Marmonier, G. Palmieri, O. Chuniaud, and M. Miesch, “GIS Instrument Transformers: EMC Conformity Tests for a Reliable Operation in an Upgraded Substation”, in Proc. Conference on Electric Power Supply Industry, Oct. 23-27, 2000, pp. 1-7.
    [20] I. Uglesic, S. Hutter, V. Milardic, I. Ivankovic, and B. Filiovic-Grcic, “Electromagnetic Disturbances of the Secondary Circuits in Gas Insulated Substation due to Disconnector Switching”, in Proc. International Conference on Power Systems Transients, Sep. 28-Oct. 2, 2003, pp. 1-6.
    [21] Y. H. Gao, H. Yuan, E. Z. Hwang, and Y. D. Cao, “Calculation of Very Fast Transient Overvoltage and its Distribution in Transformer Windings in 110 kV GIS”, in Proc. 5th International Conference on Electrical Machines and Systems, Aug. 2001, pp. 208-211.
    [22] M. Popov, L. van der Sluis, R. P. P. Smeets, and J. L. Roldam, “Analysis of Very Fast Transients in Layer-Type Transformer Windings” IEEE Trans. Power Delivery, vol. 22, no. 1, Jan. 2007, pp. 238-247.
    [23] S. Fujitz, Y. Shibuya, and M. Ishii, “Influence of VFT on Shell-Type Transformer”, IEEE Trans. Power Delivery, vol. 22, no. 1, Jan. 2007, pp. 217-222.
    [24] Y. Shibuya, S. Fujita, and E. Tanaki, “Analysis of Very Fast Transients in Transformers”, in Proc. IEE Generation, Transmission & Distribution, 2001, vol. 148, no. 5, pp. 377-383.
    [25] J. Christian and J. Xie, “Very Fast Transient Oscillation Measurement at Three Gorges Left Bank Hydro Power Plant”, in Prco. 2006 Internationl Conference on Power System Technology, Oct. 22-26, 2006, pp. 1-7.
    [26] C. Tian, X. Lin, J. Y. Xu, and Z. X. Geng, “Comparison and Analysis on Very Fast Transient Overvoltage Based on 550 kV GIS and 800 kV GIS”, in Proc. 2008 International Conference on High Voltage Engineering and Application, Nov. 9-13, 2008, pp. 288-291.
    [27] Q. Liu and Y. F. Zhang, “Influence of Switching Conditions on Very Fast Transient Over-voltage in 500 kV Gas Insulated Substation”, in Proc. 2008 International Conference on Electrical Machines and Systems, Oct. 17-20, 2008, pp. 4451-4454.
    [28] A. Tavakoli, A. Gholami, A. Parizad, H. M. Soheilipour, and H. Nouri, “Effective Factors on the Very Fast Transient Currents and Voltage in the GIS”, in Proc. Transmission & Distribution Conference & Exposition: Asia & Pacific, Oct. 26-30, 2009, pp. 1-6.
    [29] J. Jiang, G. M. Ma, C. R. Li, J. T. Quan, H. W. Wu, H. R. Xu, and B. Zhang, “Measurement and Analysis of VFTO in a 750 kV Substation”, in Proc. Power and Energy Engineering Conference, March 28-31, 2010, pp.1-4.
    [30] Y. Yamagata, Y. Nakada, K. Nojima, M. Kosakada, J. Ozawa, and I. Ishigaki, “Very Fast Transients in 1000 kV Gas Insulated Switchgear”, in Proc. IEEE Transmission and Distribution Conference, April 11-16, 1999, pp. 501-508.
    [31] J. V. G. Rama Rao, J. Amarnath, and S. Kamakshaiah, “Simulation and Experimental Method for the Suppressing of Very Fast Transient Overvoltage in a 245 kV GIS Using Ferrite Rings”, in Proc. International Conference on High Voltage Engineering and Application, Oct. 11-14, 2010, pp. 128-131.
    [32] Q. M. Li and M. L. Wu, “Simulation Method for the Applications of Ferromagnetic Materials in Suppressing High-Frequency Transients within GIS”, IEEE Trans. Power Delivery, vol. 22, no. 3, July 2007, pp. 1628-1632.
    [33] L. J. Jin, Y. C. Zhang, X. G. Zheng, and Y. Z. Shen, “Characteristic Parameter Analysis on the Suppressing VFTO in GIS by Ferrite”, in Proc. 2005 International Symposium on Electrical Insulating Materials, June 5-9, 2005, pp. 825-828.
    [34] M. Kobayashi, A. Hashimoto, and J. Ozawa, “Suppression of Very Fast Transient Overvoltages across Insulating Flang of 1000 kV GIS”, in Proc. IEEE High Voltage Engineering Symposium, Aug. 22-27, 1999, pp. 1999-2002.
    [35] 廖順安,急速暫態過電壓之特性分析與抑制,國立台灣科技大學碩士論文,民國92年。
    [36] 台電綜合研究所,明潭發電廠345 kV GIS開關突波對主變壓器絕緣破壞之研究改善,台灣電力股份有限公司研究報告,民國92年12月
    [37] 行政院原子能委員會,核三廠一號機三月十八日喪失廠內外交流電源事件調查報告,民國90年4月2日。
    [38] 核三廠安全事故調查團,核三廠3A事故調查報告,90年4月2日。
    [39] N. H. Malik, A. A. Al-ariny, and M. I. Qureshi, Electrical Insulation in Power Systems, Marcel Dekker, Inc., 1998.
    [40] C. Y. Lui and J. Hiley, “Computational Study of Very Fast Transients in GIS with Special Reference to Defects of Trapped Charge and Risetime on overvoltage amplitude”, in Proc. IEE Generation Transmission & Distribution, vol. 141, no. 5, Sep. 1994, pp. 485-490.
    [41] S. A. Boggs, N. Fujimoto, M. Collod, and E. Thuries, “The Modeling of Statistical Operating Parameters and the Computation of Operation-induced Surge Waveforms for GIS Disconnectors”, in Proc. International Conference on Large High Voltage Electric Systems, Aug. 29- Sep. 6, 1984, pp. 13-15.
    [42] E. E. Kynasl, H. M. Luehrmann, “Switching of Disconnectors in GIS Laboratory and Field Tests”, IEEE Trans. Power Apparatus and Systems, vol. PAS-104, no. 11, Nov. 1985, pp. 3143-3150.
    [43] Lalor, A. Sabot, J. Kieffer, “Dielectric Behavior of GIS Switching Disconnectors Comparison of Possible Phase Opposition Tests”, IEEE Trans. Power Delivery, vol. 3, no. 1, Jan. 1988, pp. 214-212.
    [44] V. vinod Kumar, Joy Thomas M., and M. S. Naidu, “Influence of Switching Conditions on the VFTO Magnitudes in a GIS”, IEEE Trans. Power Delivery, vol. 16, no. 4, Oct. 2001, pp. 539-544.
    [45] D. Povh, H. Schmitt, O. Volcker, and R. Wizmann, “Modeling and Analysis Guidelines for Very Fast Transients”, IEEE Trans. Power Delivery, vol. 11, no. 4, Oct. 1996, pp. 2028-2035.
    [46] 陳士麟,核三345 kV及161 kV變壓器低壓側是否加裝突波抑制設備之相關性研究,台灣電力股份有限公司研究報告,民國92年3月。
    [47] C. Das, “Surges Transferred through Transformers”, in Proc. Annual Pulp and Paper Industry Technical Conference, June 17-21, 2002, pp. 139-147.
    [48] A. Orlandi, “On the Inclusion of Switch Arc Restrikes and Lossy Ground In EMI Analysis for HV Substation”, in Proc. Electromagnetic Compatibility Conference, Sep. 5-7, 1994, pp. 92-98.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE