研究生: |
林秉言 Lin, Ping-Yen. |
---|---|
論文名稱: |
鳥類飛羽羽軸中蛋白質二級結構的分析和比較 Analysis and Comparison of Protein Secondary Structures in the Rachis of Avian Flight Feathers |
指導教授: |
黃貞祥
Ng, Chen-Siang |
口試委員: |
李耀昌
Lee, Yao-Chang 陳柏宇 Chen, Po-Yu |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 46 |
中文關鍵詞: | 羽毛 、蛋白質二級結構 、傅立葉轉換紅外光譜 、羽軸 |
外文關鍵詞: | feather, protein secondary structures, FTIR, rachis |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了適應各種生活環境,鳥類演化出許多不同的飛行方式,以及各種羽毛的型態。然而過去多以分子生物學的方式來研究鳥類羽毛的蛋白質結構,對於其中蛋白質的含量以及比例所知甚少。為了了解飛羽羽軸中的蛋白質結構和比例如何使鳥類適應各種飛行方式,我們對七種鳥類進行研究。七種鳥類分別為家雞(chicken)、綠頭鴨(mallard)、埃及聖䴉(sacred ibis)、鳳頭蒼鷹(crested goshawk)、領角鴞(collared scops owl)、虎皮鸚鵡(budgie)、斑胸草雀(zebra Finch)。本研究將以同步輻射–傅立葉轉換紅外光譜顯微術(synchrotron radiation-based Fourier transform infrared microspectroscopy, SR-FTIRM)測量和分析七種鳥類飛羽羽軸中的蛋白質二級結構(protein secondary structures),並且比較七種鳥類之間的差異。我們發現飛羽羽軸形態較為相似的鳥類間,蛋白質二級結構的比例較為接近。這項結果可以幫助我們更加深入了解鳥類飛羽的蛋白質結構,以及鳥類適應飛行的方式。
In order to adapt to various living environments, birds have evolved many different flight modes and various feather patterns. The method of molecular biology was mainly applied to study the protein structures of avian feathers in the past, and there is limited information about the protein content and ratio in avian feathers. To understand how the protein structures and combinations in the feather rachis allow birds adapt to various flight modes, we used seven species of birds for this study. The seven species of birds are chicken, mallard, sacred ibis, crested goshawk, collared scops owl, budgie, zebra finch. In this study, we investigated the protein secondary structures in the rachis of avian flight feathers and compare the differences between the seven species of birds. We found that the ratio of protein secondary structures among birds with similar flight feathers rachis morphology is closer. This result can help us better understand the protein structures of bird feathers and how birds adapt to flight.
Alfred Martin Lucas, P. R. S. (1972). "Avian Anatomy: Integument." U.S. Agricultural Research Service.
Alibardi, L. (2016). "Sauropsids Cornification is Based on Corneous Beta-Proteins, a Special Type of Keratin-Associated Corneous Proteins of the Epidermis." J Exp Zool B Mol Dev Evol 326(6): 338-351.
Alibardi, L. (2017). "Review: cornification, morphogenesis and evolution of feathers." Protoplasma 254(3): 1259-1281.
Alibardi, L. and M. Toni (2006). "Cytochemical, biochemical and molecular aspects of the process of keratinization in the epidermis of reptilian scales." Prog Histochem Cytochem 40(2): 73-134.
Alibardi, L. and M. Toni (2008). "Cytochemical and molecular characteristics of the process of cornification during feather morphogenesis." Prog Histochem Cytochem 43(1): 1-69.
Andrew Chan, K. L. and S. G. Kazarian (2016). "Attenuated total reflection Fourier-transform infrared (ATR-FTIR) imaging of tissues and live cells." Chem Soc Rev 45(7): 1850-1864.
Belbachir, K., R. Noreen, G. Gouspillou and C. Petibois (2009). "Collagen types analysis and differentiation by FTIR spectroscopy." Anal Bioanal Chem 395(3): 829-837.
Bella, J. (2016). "Collagen structure: new tricks from a very old dog." Biochem J 473(8): 1001-1025.
Bonser, R. and P. Purslow (1995). "The Young's modulus of feather keratin." J Exp Biol 198(Pt 4): 1029-1033.
Cai, S. and B. R. Singh (1999). "Identification of β-turn and random coil amide III infrared bands for secondary structure estimation of proteins." Biophysical Chemistry 80(1): 7-20.
Carey, C. (1996). "Avian Energetics and Nutritional Ecology." Springer US.
Chang, W. L., H. Wu, Y. K. Chiu, S. Wang, T. X. Jiang, Z. L. Luo, Y. C. Lin, A. Li, J. T. Hsu, H. L. Huang, H. J. Gu, T. Y. Lin, S. M. Yang, T. T. Lee, Y. C. Lai, M. Lei, M. Y. Shie, C. T. Yao, Y. W. Chen, J. C. Tsai, S. J. Shieh, Y. K. Hwu, H. C. Cheng, P. C. Tang, S. C. Hung, C. F. Chen, M. Habib, R. B. Widelitz, P. Wu, W. T. Juan and C. M. Chuong (2019). "The Making of a Flight Feather: Bio-architectural Principles and Adaptation." Cell 179(6): 1409-1423 e1417.
Cooper, E. A. and K. Knutson (1995). "Fourier transform infrared spectroscopy investigations of protein structure." Pharm Biotechnol 7: 101-143.
Feo, T. J., D. J. Field and R. O. Prum (2015). "Barb geometry of asymmetrical feathers reveals a transitional morphology in the evolution of avian flight." Proc Biol Sci 282(1803): 20142864.
Hu, D., L. Hou, L. Zhang and X. Xu (2009). "A pre-Archaeopteryx troodontid theropod from China with long feathers on the metatarsus." Nature 461(7264): 640-643.
Kovalev, A., A. E. Filippov and S. N. Gorb (2014). "Unzipping bird feathers." J R Soc Interface 11(92): 20130988.
Laurent, C. M., J. M. Dyke, R. B. Cook, G. Dyke and R. de Kat (2020). "Spectroscopy on the wing: Investigating possible differences in protein secondary structures in feather shafts of birds using Raman spectroscopy." J Struct Biol 211(1): 107529.
Lee, Y. C., C. C. Chiang, P. Y. Huang, C. Y. Chung, T. D. Huang, C. C. Wang, C. I. Chen, R. S. Chang, C. H. Liao and R. R. Reisz (2017). "Evidence of preserved collagen in an Early Jurassic sauropodomorph dinosaur revealed by synchrotron FTIR microspectroscopy." Nat Commun 8: 14220.
Leertouwer, H. L., B. D. Wilts and D. G. Stavenga (2011). "Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy." Opt Express 19(24): 24061-24066.
Lingham-Soliar, T. (2017). "Microstructural tissue-engineering in the rachis and barbs of bird feathers." Sci Rep 7: 45162.
Lingham-Soliar, T., R. H. Bonser and J. Wesley-Smith (2010). "Selective biodegradation of keratin matrix in feather rachis reveals classic bioengineering." Proc Biol Sci 277(1685): 1161-1168.
Lo, Y. C. (2004). "Performance Of An Infrared Beamline For High Spatial Resolution FTIR Microscopy." 705: 478-481.
Lopez-Lorente, A. I. and B. Mizaikoff (2016). "Mid-infrared spectroscopy for protein analysis: potential and challenges." Anal Bioanal Chem 408(11): 2875-2889.
Mauger, A., M. Demarchez, D. Herbage, J.-A. Grimaud, M. Druguet, D. Hartmann and P. Sengel (1982). "Immunofluorescent localization of collagen types I and III, and of fibronectin during feather morphogenesis in the chick embryo." Developmental Biology 94(1): 93-105.
Neurath, H. (2012). "The Proteins Composition, Structure, and Function V4." Elsevier.
Ng, C. S., C. K. Chen, W. L. Fan, P. Wu, S. M. Wu, J. J. Chen, Y. T. Lai, C. T. Mao, M. Y. Lu, D. R. Chen, Z. S. Lin, K. J. Yang, Y. A. Sha, T. C. Tu, C. F. Chen, C. M. Chuong and W. H. Li (2015). "Transcriptomic analyses of regenerating adult feathers in chicken." BMC Genomics 16: 756.
Ng, C. S., P. Wu, J. Foley, A. Foley, M. L. McDonald, W. T. Juan, C. J. Huang, Y. T. Lai, W. S. Lo, C. F. Chen, S. M. Leal, H. Zhang, R. B. Widelitz, P. I. Patel, W. H. Li and C. M. Chuong (2012). "The chicken frizzle feather is due to an alpha-keratin (KRT75) mutation that causes a defective rachis." PLoS Genet 8(7): e1002748.
Petibois, C. and G. Deleris (2006). "Chemical mapping of tumor progression by FT-IR imaging: towards molecular histopathology." Trends Biotechnol 24(10): 455-462.
Petibois, C., G. Gouspillou, K. Wehbe, J. P. Delage and G. Deleris (2006). "Analysis of type I and IV collagens by FT-IR spectroscopy and imaging for a molecular investigation of skeletal muscle connective tissue." Anal Bioanal Chem 386(7-8): 1961-1966.
Rayner, J. M. (1982). "Avian flight energetics." Annu Rev Physiol 44: 109-119.
Sullivan, T. N., A. Pissarenko, S. A. Herrera, D. Kisailus, V. A. Lubarda and M. A. Meyers (2016). "A lightweight, biological structure with tailored stiffness: The feather vane." Acta Biomater 41: 27-39.
Tucureanu, V., A. Matei and A. M. Avram (2016). "FTIR Spectroscopy for Carbon Family Study." Crit Rev Anal Chem 46(6): 502-520.
Wang, B. and M. A. Meyers (2017). "Seagull feather shaft: Correlation between structure and mechanical response." Acta Biomater 48: 270-288.
Wang, X., R. L. Nudds, C. Palmer and G. J. Dyke (2017). "Primary feather vane asymmetry should not be used to predict the flight capabilities of feathered fossils." Science Bulletin 62(18): 1227-1228.
Wegst, U. G. K. and M. F. Ashby (2004). "The mechanical efficiency of natural materials." Philosophical Magazine 84(21): 2167-2186.
Weiss, I. M., K. P. Schmitt and H. O. Kirchner (2011). "The peacock's train (Pavo cristatus and Pavo cristatus mut. alba) II. The molecular parameters of feather keratin plasticity." J Exp Zool A Ecol Genet Physiol 315(5): 266-273.
Yang, H. Y., S. N. Yang, J. L. Kong, A. C. Dong and S. N. Yu (2015). "Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy." Nature Protocols 10(3).
Zhao, W., R. Yang, Y. Zhang and L. Wu (2012). "Sustainable and practical utilization of feather keratin by an innovative physicochemical pretreatment: high density steam flash-explosion." Green Chemistry 14(12): 3352.