研究生: |
陳亞萍 Chen Ya Ping |
---|---|
論文名稱: |
高頻微機械共振器之設計與模擬 Design and Simulation of High Frequency Micromechanical Resonators |
指導教授: |
柳克強
曾繁根 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2004 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 116 |
中文關鍵詞: | 微機械共振器 、高頻 |
外文關鍵詞: | Micromechanical Resonators, High Frequency |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文所設計之高頻微機械式共振器主要應用於通訊上,設計目標希望超過1GHz的頻率屏障、縮小尺寸、高的quality factor Q、很小的DC損耗以及和CMOS IC製程整合。這種高頻的微機械式共振器未來希望能用來取代傳統收發器上的濾波器和震盪器。
藉著改變幾何尺寸、結構支撐處以及選擇不同振動模態的方式來做為設計高頻微機械式共振器的依據,設計了兩種共振器,分別是邊緣固定的圓盤共振器和奈米碳管機械式共振器,使用ANSYS和CoventorWare去模擬自然振動頻率及靜電-結構的耦合效應,用以判斷其自然振動頻率是否已達到設計上的要求及其受靜電力下之位移是否太小,而無法達到偵測的目的。
邊緣固定圓盤共振器的頻率大概在510MHz左右而奈米碳管機械式共振器則有超過1GHz的自然頻率,模擬和公式推導預測結果是非常接近的,製程規劃則仰賴CoventorWare,關於奈米碳管機械式共振器的能量損耗也會一併被探討。
邊緣固定圓盤共振器是一個需要六道光罩的製程,其自然頻率並不夠高且其能量的損耗也很難估計。而奈米碳管機械式共振器則是一個只需要兩道光罩的製程,其具有良好的機械特性和高頻率,而其能量損耗估計的結果在奈米尺寸時都很小,所以在通訊上的應用是一個不錯的選擇。
Design high natural frequency □mechanical resonators for communication applications. This high frequency □mechanical resonator is designed based on breaking GHz barrier, tiny size, high Q’s, zero DC power consumption and integrate with CMOS IC process. □mechanical resonators are used to replace filters, oscillators on typical transceivers.
Design high frequency □mechanical resonators by changing geometry structure, anchoring type and vibration mode. There are edge-clamped disk resonator and carbon nanotube □mechanical resonator designed. Use ANSYS and CoventorWare software to simulate the natural frequency and the electrostatic-structure coupling effect. Check the frequency is high enough or not and the electrostatic displacement is larger enough for detecting.
Edge-clamped disk resonator’s frequency is about 510MHz and carbon nanotube resonator exceeds 1GHz. The simulated results are very close to predicted values. The processes are schemed by CoventorWare tool and the energy losses of carbon nanotubes resonator are also indicated.
Edge-clamped disk resonator has six masks to manufacture. The natural frequency isn’t high enough and the losses are difficult to predict. Carbon nanotubes resonator is a 2 masks process with excellent mechanical properties and high frequency. The losses predicted are small during the nano-scale. It is a proper candidate as a high frequency □mechanical resonator for communication applications.
[1] Nathanson, H. C., et al., “The Resonant Gate Transistor,” IEEE Trans. on Electron Dev., Vol. 14, 1967, pp117-133.
[2] Putty, M. W., et al., “One-Port Active Polysilicon Resonant Microstructures,” IEEE Micro Electro Mechanical Systems Workshop,” Salt Lake City, 1989, pp. 60-65.
[3] Wan-Thai Hsu, et al., “A Sub-Mcron Capacitive Gap Process For Multiple-Metal-Electrode Lateral Micromechanical Resonators,” IEEE, 2001.
[4] Kun Wang, et al., “VHF Free-Free Beam High-Q Micromechanical Resonators,” IEEE Journal Of MicroElectroMechanical Systems., Vol. 9, No. 3, September 2000.
[5] C.T.-C., et al., “CMOS Micromechanical Resonator Oscillator,” Technical Digest, IEEE International Electron Device Meeting, Washington, D.C., December 5-8, 1993, pp. 199-202.
[6] Tang, W. C., et al., “Laterally Driven Polysilicon Resonant Microstructures,” IEEE Micro Electro Mechanical Systems Workshop, Salt Lake City, 1989, pp. 53-59.
[7] F.D. Bannon III and C.T.-C. Nguyen, "High Frequency
Microelectromechanical IF Filters," Technical Digest, 1996 IEEE Electron Devices Meeting, San Francisco, CA, pp.773-776, Dec. 8-11, 1996.
[8] J.R. Clark, W.-T. Hsu, and C.T.-C. Nguyen, "High-Q VHF
Micromechanical Contour-mode Disk Resonator," Technical Digest, IEEE Int. Electron Devices Meeting, San Francisco, California, Dec.11-13, pp.493-496, 2000.
[9] Ki Bang Lee, et al., “Design And Fabrication Of An Annular High Frequency Resonator,” 2002 ASME International Mechanical Engineering Congress & Exposition, New Orleans, Louisiana, November 17-22, 2002.
[10] C. T.-C. Nguyen, “Vibrating RF MEMS for Low Power Communications,” MRS Meeting, Boston, MA, Dec. 2-6, 2002.
[11] C. T.-C. Nguyen, Dig. of Papers, Topical Mtg on Silicon Monolithic IC’s in RF Systems, Sept. 12-14, 2001, pp. 23-32.
[12] Héctor J. De Los Santos, “Introduction To Microelectromechanical(MEM) Microwave Systems.” 1999, pp. 83-84.
[13] Nguyen, C. T.-C., and R. Howe, “Design And Performance Of CMOS Micromechanical Resonator Oscillators.” IEEE Int. Freq. Control Symp., 1994, pp. 127-134.
[14] Nguyen, C. T.-C., “Micromechanical Signal Processors,” Ph.D. diss., UC Berkeley, 1994.
[15] Sniegowsji, J. J., et al., “Microfabricated Actuators And Their Application To Optics,” Proc. SPIE – Int. Soc. Opt. Eng. (USA) San Jose, CA, February 7-9, 1995, Vol. 2383, pp. 46-64.
[16] Tang, W, C., T.-C. Nguyen, and R. T. Howe, “Laterally Driven Polysilicon Resonant Microstructures,” IEEE Micro Electro Mechanical Systems Workshop, Salt Lake Coty, 1989, pp. 53-59.
[17] 賴育良, “ANSYS 電腦輔助工程分析,” 1997.
[18] 康淵, “ANSYS 入門,” 1992.
[19] “Nanodevice Motion At Microwave frequencies,” Nanoelectromechanical Systems, Nature Journal, January 30, 2003.
[20] John R. Clark, et al., “High-Q VHF Micromechanical Contour-Mode Disk Resonators,” IEEE Int. Electron Devices Meeting, San Francisco, California, Dec. 11-13, 2000, pp. 493-496.
[21] Robert D. Blevins, “Formulas For Natural Frequency And Mode Shape,” 1995.
[22] http://www.memsnet.org/
[23] Kun Wang, et al., “VHF Free-Free Beam High-Q Micromechanical Resonators,” IEEE Journal Of Microelectromechanical Systems, Vol 9, No. 3, September 2000.
[24] Jing Wang, et al., “Self-Aligned 1.14-GHz Vibrating Radial-Mode Disk Resonators,” IEEE Transducers, Boston, June 8-12, 2003.
[25] Mohamed A. Abdelmoneum, et al., “Stemless Wine-Glass-Mode Disk Micromechanical Resonators,” IEEE Micro Electro Mechanical Systems, 2003.
[26] M. Roukes, Hilton Head’2000, pp. 367-376.
[27] K. Wang, et al., MEMS ’99, pp. 453-458.
[28] C. T.-C. Nguyen, “Microelectromechanical devices for wireless communications (invited),” Proceedings, 1998 IEEE International
Micro Electro Mechanical Systems Workshop, Heidelberg, Germany, Jan. 25-29, 1998, pp. 1-7.
[29] C. T.-C. Nguyen and R. T. Howe, “CMOS micromechanical resonator oscillator,” Technical Digest, IEEE International Electron Devices Meeting, Washington, D. C., December 5-8, 1993, pp. 199-202.
[30] Rob N. Candler, “Investigation of energy loss mechanisms in micromechanical resonators”, IEEE Transducers’03, Boston, June 8-12, 2003, pp. 332-335.
[31] Reza Abdolvand, “Thermoelastic damping in trench-refilled polysilicon resonators”, IEEE Transducers’03, Boston, June 8-12, 2003, pp. 324-327.
[32] Clarence Zener, “Internal friction in solids II. General theory of thermoelastic internal friction”, Physical Review, January 1, 1938, pp. 90-99.
[33] Terry V. Roszhart, “The effect of thermoelastic internal friction on the Q of micromachined silicon resonators”, IEEE Hilton Head, 1990, pp. 13-16.
[34] Clarence Zener, “Internal friction in solids I. Theory of internal friction in reeds”, Physical Review, August 1, 1937, pp. 230-235.
[35] P. Mohanty, “Intrinsic dissipation in high-frequency micromechanical resonators”, Physical Review B 66, 085416, 2002.
[36] Kenji Numata, “Measurement of the intrinsic losses in various kinds of fused silica”, The 2nd TAMA Symposium, February 6, 2002.
[37] Zhan-chun Tu, “Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young’s moduli dependent on layer number”, Physical Review B, Volume 65, 233407, 2002.
[38] Daniel Sanchez-Portal, “Ab initio structural, elastic, and vibrational properties of carbon nanotubes”, Physical Review B, Volume 59, Number 19, 15 May, 1999, pp. 678-687.
[39] Gregory Van Lier, “Ab initio study of the elastic properties of single-walled carbon nanotubes and grephene”, Elsevier, Chemical physics letters 326 (2000) pp.181-185.
[40] Clark T.-C. Nguyen, “An integrated CMOS micromechanical resonator high-Q oscillator”, IEEE Journal of Solid-State Circuits, Vol. 34, No. 40, April, 1999.
[41] Seong Yoel No, “Single-crystal silicon HARPSS capacitive resonators with submicron gap-spacing”, Solid-State Sensor, Actuator and Microsystems Workshop Hilton Head Island, South Carolina, June 2-6, 2002.
[42] C. T.-C. Nguyen, “Micromechanical resonators for oscillators and filters,” Proceedings of the 1995 IEEE International Ultrasonics Symposium, Seattle, WA, pp. 489-499, Nov. 7-10, 1995.
[43] R.E. Mihailovich, “Dissipation measurements of vacuum-operated single-crystal silicon microresonators”, Sensors and Actuators A 50 (1995) 199-207.
[44] Kevin Y. Yasumura, “Quality factor in micron- and submicron-thick cantilevers”, JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 9, NO. 1, MARCH 2000.
[45] Ron Lifshitz and M. L. Roukes, “Thermoelastic damping in micro- and nanomechanical systems”, Physical Review B, Volume 61, Number 8, 15 February, 2000.
[46] A. B. Hutchinson, “Dissipation in nanocrystalline-diamond nanomechanical resonators”, APPLIED PHYSICS LETTERS, VOLUME 84, NUMBER 6, 9 FEBRUARY, 2004.
[47] G. Oveney, “Structual rigidity and low frequency vibrational modes of long carbon nanotubes”, Z. Phys. D 27, 93-96, 1993.
[48] Dong Qian, “Mechanics of carbon nanotubes”, Appl Mech Rev Vol 55, no 6, November 2002.
[49] Eric W. Wong, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes”, Science, Vol 277, 26 September, 1997.
[50] M. S. Dresselhaus, “Carbon Nanotubes Synthesis, Structure, Properties, and Applications”.
[51] M. M. J. Treacy, Ebbesen, T. W., J. M. Gibson, Nature 381, pp. 678, 1996.
[52] E. W. Wong, P. E. Sheehan, C. M. Lieber, Science 277, pp. 1971, 1977.
[53] P. Poncharral, Z. L. Wang, D. Ugarte, W. A. de Heer, Science 283, pp. 1513, 1999.
[54] J. P. Savetat, G. A. D. Briggs, J. M. Bonard, R. R. Bacsa, A. J. Kulik, Phys. Rev. Lett. 82, pp. 944, 1999.
[55] R. Al-Jishi, “Lattice dynamics of graphite intercalation compound”, PhD thesis, Massachusetts Institute of technology.
[56] J. B. NELSON AND D. P. RILEY, “THE THERMAL EXPANSION OF GRAPHITE FROM 15"~. TO 800"c.: PART I. EXPERIMENTAL”, 23 March 1945.
[57] Zhili Hao, ” An analytical model for support loss in micromachined
beam resonators with in-plane flexural vibrations”, Sensors and Actuators A 109 (2003) 156–164.
[58] J. Yang, T. Ono, M. Esashi, “Energy dissipation in submicrometer thick single-crystal silicon cantilevers”, J. Microelectromech. Syst. 11 (6) (2002) 775–783.
[59] Jinling Yang, ” Energy Dissipation in Submicrometer Thick
Single-Crystal Silicon Cantilevers”, JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 11, NO. 6, DECEMBER 2002
[60] 董建宏, “奈米碳管場發射二極元件之研製”, 2004.
[61] B. Reulet et al., “Acoustoelectric Effects in Carbon Nanotubes,”
Physical Review Letters 85: 2829-2832 (2000).
[62] John F.Davis et al, “High-Q Mechanical Resonator Arrays Based on
Carbon Nanotubes”, NASA, 2003