研究生: |
許湞陽 Chen-Yang Hsu |
---|---|
論文名稱: |
大腸桿菌PriB蛋白分子與單股DNA複合體的結晶學結構研究 Crystallographic study of Escherichia coli PriB complex with single-stranded DNA |
指導教授: |
孫玉珠
Yuh-Ju Sun 蕭傳鐙 Chwan-Deng Hsiao |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 47 |
中文關鍵詞: | PriB 、引子合成體 、許湞陽 、ΦX174型態 |
外文關鍵詞: | PriB, Primosome, Chen-Yang Hsu, ΦX174type |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在大腸桿菌 (Escherichia coli)中的DNA複製需要引子合成體 (Primosome)、RNA引子 (RNA primer)、單股DNA結合蛋白質 (Single-stranded DNA-binding protein,後稱SSB)以及DNA聚合酶 (DNA polymerase)I,III參與。引子合成體作用在延遲股 (Lagging strand),它負責確認DNA複製的起始點並解開雙股螺旋,以及合成RNA引子 (Primer)。大腸桿菌裡至少有兩種引子合成體已經被確認了,分別是OriC型態和ΦX174型態 (又稱PriA-dependent primosome)。當大腸桿菌的複製叉受損時,需要進行修復才能在重新啟動DNA的複製,這時PriA引子合成體的複製系統扮演非常重要的角色。引子合成體是由七個蛋白質組成的: PriA、PriB、PriC、DnaB、DnaC、DnaT and DnaG (Primase)。而PriB在引子合成體中所扮演的角色為 (1)穩定PriA與DNA-PAS (Primosome assembly site)的結合和 (2) 促進PriA-DnaT之間複合體的合成。在本研究中我們嘗試利用單股DNA與PriB結合進行結晶,並利用X光繞射方法解出PriB與DNA複合體的三級結構。
PriB與dA5mer複合體在25 ℃下,母液為500 mM NaCl,100 mM Na3PO4 pH 7.0,20% PEG 4000,PriB-dA5mer複合體與母液以體積比為2 : 1混和,形成片狀晶體。此晶體經由X光繞射得到繞射點的解析度可達2.8 Å,PriB-DNA複合體晶體的空間群屬於Monoclinic的P21,它的晶胞參數是a=47.4 Å,b=45.67 Å,c= 51.48 Å,β=96.1°。1個最小不對稱單元 (asymmetric unit)可以容納2個分子。由PriB-dA5mer複合體的三級結構得知dA5mer結合位置在PriB的Loop12與Loop45形成的溝槽 (groove)區域內。而DNA上帶負電荷的磷酸根會被帶正電荷的Lys89 (Loop45)吸引,並且會與Ser20 (Loop12)產生氫鍵作用。
Analyses of primosome assembly at chromosomal and plasmid origins as well as that at single-stranded replication origins revealed the presence of two distinct primosomes in Escherichia coli for primer RNA synthesis and duplex unwinding. A DnaA-dependent primosome is assembled at oriC, the chromosomal origin of Escherichia coli, as well as at the A site. In contrast, PriA protein recognizes a hairpin, called PAS (primosome assembly site), and initiates assembly of the ΦX174-type PriA-dependent primosome in conjunction with other prepriming proteins.
Seven primosomal protein, PriA, PriB, PriC, DnaB, DnaC, DnaG and DnaT, are required for the assembly of a primosome at the primosome assembly site (PAS) on a single-stranded DNA-binding protein (SSB)-coatedΦX174 phage DNA. PriB stabilizes PriA on the DNA, this cannot be the sole reason it facilitates binding of DnaT, and it is likely that PriB-induced conformational rearrangements contribute as well. The data presented thus far suggest that PriB acts to facilitate entry of DnaT into a complex with PriA.
We solved the crystal structure of the PriB and dA5mer complex from Escherichia coli at a resolution of 2.8 Å. The crystal of PriB-dA5mer belong to the Monoclinic space group P21 and cell parameter is a=47.4 Å,b=45.67 Å,c= 51.48 Å,β=96.1°。There are two PriB molecules per one asymmetric unit. We solved the phase problem by using MR method from PriB model. The structure of PriB is similar to that of single-stranded DNA binging protein (SSB), even though they share only 16% amino acid sequence identity. We describe here the structure of the PriB complex with dA5mer.
Reference List
1. Lovett, S. T. (2003) Mol.Cell 11, 554-556
2. Masai, H. and Arai, K. I. (1996) Front Biosci. 1, d48-d58
3. Marians, K. J. (2000) Trends Biochem.Sci. 25, 185-189
4. Masai, H. and Arai, K. I. (1995) Eur.J.Biochem. 230, 384-395
5. Arai, K. and Kornberg, A. (1981) Proc.Natl.Acad.Sci.U.S.A 78, 69-73
6. Mok, M. and Marians, K. J. (1987) J.Biol.Chem. 262, 2304-2309
7. Shlomai, J. and Kornberg, A. (1980) Proc.Natl.Acad.Sci.U.S.A 77, 799-803
8. Marians, K. J. (1999) Prog.Nucleic Acid Res.Mol.Biol. 63, 39-67
9. Jaktaji, R. P. and Lloyd, R. G. (2003) Mol.Microbiol. 47, 1091-1100
10. Liu, J. and Marians, K. J. (1999) J.Biol.Chem. 274, 25033-25041
11. Rangarajan, S., Woodgate, R., and Goodman, M. F. (2002) Mol.Microbiol. 43, 617-628
12. Polard, P., Marsin, S., McGovern, S., Velten, M., Wigley, D. B., Ehrlich, S. D., and Bruand, C. (2002) Nucleic Acids Res. 30, 1593-1605
13. McGlynn, P., Al Deib, A. A., Liu, J., Marians, K. J., and Lloyd, R. G. (1997) J.Mol.Biol. 270, 212-221
14. Nurse, P., Liu, J., and Marians, K. J. (1999) J.Biol.Chem. 274, 25026-25032
15. Sandler, S. J. (2000) Genetics 155, 487-497
16. Sandler, S. J., McCool, J. D., Do, T. T., and Johansen, R. U. (2001) Mol.Microbiol. 41, 697-704
17. Allen, G. C., Jr. and Kornberg, A. (1993) J.Biol.Chem. 268, 19204-19209
18. Greenbaum, J. H. and Marians, K. J. (1984) J.Biol.Chem. 259, 2594-2601
19. Ng, J. Y. and Marians, K. J. (1996) J.Biol.Chem. 271, 15642-15648
20. Ng, J. Y. and Marians, K. J. (1996) J.Biol.Chem. 271, 15649-15655
21. Liu, J., Nurse, P., and Marians, K. J. (1996) J.Biol.Chem. 271, 15656-15661
22. Sandler, S. J. and Marians, K. J. (2000) J.Bacteriol. 182, 9-13
23. Sandler, S. J., Marians, K. J., Zavitz, K. H., Coutu, J., Parent, M. A., and Clark, A. J. (1999) Mol.Microbiol. 34, 91-101
24. Low, R. L., Shlomai, J., and Kornberg, A. (1982) J.Biol.Chem. 257, 6242-6250
25. Allen, G. C., Jr. and Kornberg, A. (1991) J.Biol.Chem. 266, 11610-11613
26. Schekman, R., Weiner, A., and Kornberg, A. (1974) Science 186, 987-993
27. Schekman, R., Weiner, J. H., Weiner, A., and Kornberg, A. (1975) J.Biol.Chem. 250, 5859-5865
28. Murzin, A. G. (1993) EMBO J. 12, 861-867
29. Kerr, I. D., Wadsworth, R. I., Cubeddu, L., Blankenfeldt, W., Naismith, J. H., and White, M. F. (2003) EMBO J. 22, 2561-2570
30. Bochkarev, A. and Bochkareva, E. (2004) Curr.Opin.Struct.Biol. 14, 36-42
31. Suck, D. (1997) Nat.Struct.Biol. 4, 161-165
32. Curth, U., Genschel, J., Urbanke, C., and Greipel, J. (1996) Nucleic Acids Res. 24, 2706-2711
33. Yang, C., Curth, U., Urbanke, C., and Kang, C. (1997) Nat.Struct.Biol. 4, 153-157
34. Saikrishnan, K., Jeyakanthan, J., Venkatesh, J., Acharya, N., Sekar, K., Varshney, U., and Vijayan, M. (2003) J.Mol.Biol. 331, 385-393
35. Raghunathan, S., Kozlov, A. G., Lohman, T. M., and Waksman, G. (2000) Nat.Struct.Biol. 7, 648-652
36. Webster, G., Genschel, J., Curth, U., Urbanke, C., Kang, C., and Hilgenfeld, R. (1997) FEBS Lett. 411, 313-316