研究生: |
洪神佑 |
---|---|
論文名稱: |
在數學臆測教學下一組國小六年級學生論證結構發展之研究 The Study of Developing Argumentation Structure in A Group of Sixth Grade Classroom of Conjecturing Teaching |
指導教授: | 林碧珍 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2016 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 123 |
中文關鍵詞: | 數學臆測 、數學論證 、小組討論 |
外文關鍵詞: | Mathematical Conjecturing, Mathematical Argumentation, Group Discussion |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
數學臆測能引發學生的數學論證能力。本研究採個案研究法,選擇參與國科會計畫的教師之課室為研究對象,繪製三個不同數學單元中小組討論的論證結構圖,並分析在數學臆測教學課室中,一組國小六年級學生的數學論證結構發展情形。
研究結果發現,小組成員填寫猜想時,能夠依據工作單數據,且成員彼此協助提供支持猜想的證據,而討論過程中,小組成員會透過反駁去推翻其他成員的想法,而其他成員也能夠藉由使用證據或是反反駁來鞏固自己的猜想。小組成員共同猜想單的形成,容易受到小組領導者的影響,而小組討論時如果狀況不佳,則需要教師介入提問幫忙。而小組論證的特徵和品質,受到臆測單元及臆測任務所影響,操作性的單元及學生先備知識充足的單元,所表現的論證品質較佳,而臆測目標是在發展解題策略的單元,產生論證元素則較少。
因此本研究認為,小組討論能夠有助於論證發展,而教學時的教學單元與臆測任務目標也會影響論證結構,進而影響小組論證的特徵與品質。
Mathematical conjecture activity can motivate mathematical arguments ability of students. This research used case study method, and chose the classrooms of teachers that participate in Research Scholarship, NSC (National Science Council) as research object. The case study drew up argumentation structure of group discussions from three different mathematic lessons, and analyzed mathematical argumentation development for one group of sixth grade students in the mathematical conjecturing classroom.
The results found that when group members filled out the conjecture activity, they were able to work with data of the worksheet, and assisted each other to support the conjecture warrant. In the course of the discussion, members of the group would use rebuttal to overthrow the conjecture of the other members. Group members, whose conjecture were overthrown, then used supportive warrantor anti rebuttal to strengthen their own conjecture. The group leader easily affected forming of group members common conjecture worksheet. If the group discussion went poorly, it then required the assistance of the teachers. Conjecture lessons and conjecture mission affected the characteristics and quality of group argumentation. The operational lessons and prior knowledge sufficient lessons showed better quality in argumentation. Lessons with purpose of developing problem solving strategy generated less argumentation elements.
Therefore, this research suggests that group discussions will contribute to the development of argumentation. The lessons during teaching and the content of conjecture tasks also affect structure of argumentation, thereby affecting the characteristics and quality of group argumentation.
參考文獻
中文文獻
丁惠琪(2000)。合作學習應用在國小數學教學之探究。國立台北師範學院課程與教學研究所碩士論文,未出版。
尤昭奇(2008)。實施以臆測為中心的數學探究教學中七年級學生數學素養的展現之行動研究。未出版碩士論文。國立彰化師範大學科學教育研究所。
吳俊德(2008)。不同推理能力學生猜測與檢驗歷程之探討。未出版碩士論文,國立彰化師範大學科學教育研究所。
呂沅潤 (2015)。在數學臆測教學之下國小四年級論證結構之比較。未出版碩士論文,國立新竹教育大學數理教育研究所。
李惠如(2010)。在以臆測活動為中心的教學情境下八年級學生臆測思維歷程的展現與其數學解題歷程之研究。未出版碩士論文。國立彰化師範大學科學教育研究所。
周欣怡 (2015)。在數學臆測教學之下國小三年級論證發展之研究。未出版碩士論文,國立新竹教育大學數理教育研究所。
林碧珍(2013)。師資培育者幫助教師協助學生學習數學的教師專業發展研究。行政院國家科學委員會專題研究計畫期末報告。(計畫編號:NSC99-2511-S134-005-MY3),未出版。
林碧珍(2014)。數學教師與其師資培育者的專業發展:統整理論建構與實務應用子計畫一:國小在職教師設計數學臆測活動的專業成長研究。行政院科技部補助專題研究計畫。(計畫編號:NSC 100-2511-S-134-006-MY3),未出版。
林碧珍(2015)。國小三年級課室以數學臆測活動引發學生論證初探。科學教育學刊,23(1),83-110。
林碧珍、周欣怡(2013年12月)。國小學生臆測未知結果之論證結構:以四邊形沿一對角線剪開為例。「第29屆科學教育國際研討會」發表之論文,國立彰化師範大學。
林碧珍、馮博凱(2013年12月)。國小學生反駁錯誤命題的論證結構-以速率單元為例。「第29屆科學教育國際研討會」發表之論文,國立彰化師範大學。
林碧珍、蔡文煥(2014)。數學教師與其師資培育者的專業發展:統整理論建構與實務應用-子計劃一:國小在職教師設計數學臆測活動的專業成長研究(3/3)。行政院科技部補助專題研究計畫(計畫編號:NSC 100-2511-S-134-006-MY3)。
林碧珍、鍾雅芳(2013)。六年級學生解決數字規律性問題的數學臆測思維。2013年第五屆科技與數學教育國際學術研討會暨數學教學工作坊論文集(pp.100-110),6月8-9日。國立台中教育大學數學教育學系。
林福來(2007)。青少年數學論證「學習與教學」理論之研究:總計畫(4/4)。行政院國家科學委員會專題研究計畫期末報告。(計畫編號:NSC94-2521-S-003-001),未出版。
張少偉(2010)。實施以臆測為中心的教學對七年級個案學生數學論證能力影響之研究。未出版碩士論文。國立彰化師範大學科學教育研究所。
教育部(2008)。國民中小學九年一貫課程綱要數學學習領域。臺北:作者。
莊青倫(2012)。以臆測為中心的數學探究教學下探討國中生數學素養的行動研究。未出版碩士論文。國立彰化師範大學科學教育研究所。
陳奎伯、顏思瑜(譯)(2009)。教育心理學:為行動而反思。(Angela M O’Donnell, Johnmarshall Reeve & Jeffrey K. Smith著)。台北市:雙葉書廊。
陳英娥(2002)。教室中的數學論證之研究。教育研究資訊,10(6),111-132。
陳英娥、林福來(1998)。數學臆測的思維模式。科學教育學刊,6(2),191-218。
陳韋君(2015)。探索六位個案學生的臆測思維歷程:以數列為例。未出版碩士論文。國立新竹教育大學數理教育所。
陳家鵬(2008)。數學課室討論文化下國小五年級數學推理規範之發展:以分數為例之研究。國立新竹教育大學數理教育研究所。未出版碩士論文。
陳瓊森(譯)(1995)。Howard Gardner著。超越教化的心靈:追求理解的認知發展。臺北市:遠流
彭兆宇(2013)。一位國中七年期數學科教師實行合作學習之行動研究。國立新竹教育大學數理教育研究所碩士論文,未出版。
彭淑芬(2013)。探究國小六年級數學學習高成就學童之臆測思維-以比與比值問題為例。未出版碩士論文。國立新竹教育大學數理教育研究所。
游惠音(1996)。同儕交互發問合作學習對國小六年級社會科學習成就表現、勝任目標取向及班級社會關係之影響。國立立師範大學教育心理與輔導研究所碩士論文,未出版。
馮博凱(2014)。國小三年級學生論證之比較研究。國立新竹教育大學數理研究所。
黃政傑、林佩璇(1996)。合作學習。臺北市:五南圖書。
黃政傑和吳俊憲(2006)。合作學習:發展與實踐。台北:五南。
黃翎斐、張文華、林陳涌(2008)。不同佈題模式對學生論證表現的影響。科學教育學刊,16(4),375-393。
黃瑞琴(1991)。質的教育研究方法。臺北市:心理。彭淑芬(2013)。探索國小六年級數學學習高成就學童之臆測思維--以比與比值問題為例。未出版碩士論文。國立新竹教育大學數理教育研究所。
過伯祥(2000)。猜想與合情推理。台灣:凡異。
廖曉澐(2010)。探討8年級學生在規律問題中形成與檢驗猜想的表現與。未出版碩士論文,國立彰化師範大學數學系所。
蔡永巳(1997)。國二理化科試行合作學習之合作試行動研究。彰化師範大學科學教育研究所碩士論文,未出版。
蔡忠翰(2011)。高一數理資優班與普通班學生在數列級數單元的解題中所展現的臆測思維與數學素養之比較研究。未出版碩士論文。國立彰化師範大學資賦優異研究所。
蔡俊彥、黃台朱、楊錦潭(2008)。國小學童網路論證能力及科學概念學習之研究。科學教育學刊,16(2),171-192。
蔣永紅(2005)。合情推理與數學學習。未出版碩士論文。華中師範大學。引自:http://www.cnki.net
蕭淑惠(2010)。實施以臆測為中心的教學探討四年級學生臆測思維與主動思考能力展現之行動研究。未出版碩士論文。國立彰化師範大學科學教育研究所。
鍾雅芳(2012)。規律性問題下六年級學生臆測思維的探討。未出版碩士論文。國立新竹教育大學數理教育研究所。
鍾靜(1991)。國小數學科評量之探討。教師天地,54,39-41。
西文部份
Balacheff, N. (1988). Aspects of proof in pupils’ practice of school mathematics.In D. Pimm (Ed), Mathematics, teachers and children, (pp.216-235). Stoughton: Hodder education.
Billig, M. (1987). Arguing and thinking: A rhetorical approach to social psychology. Cambridge: Cambridge University Press.
Boero, P. (1999). Argumentation and mathematical proof: A complex, productive, unavoidable relationship in mathematics and mathematics education.International Newsletter on the Teaching and Learning of Mathematical Proof,7(8).
Cañadas, M. C., Deulofeu, J., Figueiras, L., Reid, D., & Yevdokimov, A. (2007). The conjecturing process: Perspectives in theory and implications in practice. Journal of Teaching and Learning, 5(1), 55–72.
Cantlon, D. (1998). Kid+conjecture=mathematics power. Teaching Children Mathematics, 5(2), 108-112.
Cuseo, J. B.(1992). Cooperative leaming vs. small-group discussions and gpoup projects: The critical differences. Cooperative Learning and College Teaching, 2(3), 4-9.
Davis, P. J., Hersh, R., & Marchisotto, E. A. (1995). The mathematical experience. Boston:Birkhauser.
Douek, N. (1999). Argumentative aspects of proving: Analysis of some undergraduate mathematics students’ performances. In O. Zaslavsky (Eds.), Proceedings of the 23nd conference of the international group for the psychology of mathematics education(Vol.2,pp. 273-288). Haifa,Israel: PME.
Douek, N., Scali, E., (2000).About argumentation and conceptualisation, Proceedings of the 24th conference of the international group for the psychology of mathematics education(Vol. 2, pp. 249-256). Hiroshima, Japan: PME.
Driver, R., Newton, P., & Osborne, J. (2000).Establishing the norms of scientific argumentation in classroom.Science Education, 84(3), 287-312.
Erduran, S., Simon, S., & Osborne, J. (2004). TAPing into argumentation: Developments in the application of Toulmin’s argument pattern for studying science discourse.Science Education, 88(6), 915-933.
Gall, M. D., Gall, J. P., & Borg, W. R. (2007). Educational research: An introduction (8th ed.). Boston, MA: Allyn and Bacon.
Gold, R. L. (1958).Roles in sociological field observations.Social Forces, 36(3), 217-223.
Hanna, G. (1989). More than formal proof.For the Learning of Mathematics, 9(1), 20-25.
Johnson D.W., Johnson R.T., & Holubec E.J. (1994). Cooperative learning in the classroom. Alexandria, VA : Association for Supervision and Curriculum Development.
Johnson, D. W., & Johnson, R. T. (1990). Cooperative learning and achievement. In S. Sharan(Ed.), Cooperative learning:Theory and Research(pp.23-37). New York: Praeger Publishers.
Johnson, D.W. &Johnson, R.T.(1987). Learning Together and Alone:Cooperative, Competitive,and Individualistic Learning. Englewood Cliffs, NJ:Prentice-Hall.
Keith, A. (2006). Mathematical argument in a second grand class: generating and justifying generalized statements about odd and even numbers. In S. Z. Smith & M. E. Smith (Eds.), Teachers engaged in research: Inquiry into mathematics classrooms, grades preK-2 (pp. 35-68).
Knipping, C. (2004). Argumentations in proving discourses in mathematics classrooms.In G. Törner, et al. (Eds.), Developments in mathematics education in German-speaking countries.Selected papers from the annual conference on didactics of mathematics, Ludwigsburg, March 5–9, 2001 (pp. 73–84). Hildesheim: Franzbecker Verlag.
Knipping, C.(2003). Argumentation structures in classroom proving situations. In M. A. Mariotti (Ed.), Proceedings of the third conference of the European society in mathematics education (unpaginated). Retrieved from http://ermeweb.free.fr/CERME3/Groups/TG4/TG4_Knipping_cerme3.pdf
Knipping, C.(2008). A method for revealing structures of argumentations in classroom proving processes.ZDM The international journal on mathematics education, 40(3), 427-447.doi: 10.1007/s11858-008-0095-y
Knipping, C., & Reid, D. A., (2013). Revealing structures of argumentations in classroom proving processes. In A. Andrew & I. J. Dove (Eds.), The Argument of mathematics (pp.119-146). Dordrecht: Springer.
Krummheuer, G. (1995). The ethnography of argumentation. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning: Interaction in classroom cultures (pp. 229-269). Hillsdale, NJ: Lawrence Erlbaum.
Krummheuer, G. (2007). Argumentation and participation in the primary mathematics classroom: Two episodes and related theoretical abductions. Journal of Mathematical Behavior, 26(1), 60-82.
Kuhn D. (1991). The skills of argument. New York: Cambridge University Press.
Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery. New York: Cambridge University Press.
Lin, F.L. (2006). Designing mathematics conjecturing activities to foster thinking and constructing actively. Keynote address in the APEC-TSUKUBA International Conference. Japan, Dec 2-7.
Lin, F.L., & Yu,J. W. (2005).False proposition-As a means for making conjectures in mathematics classrooms. Paper presented at the Asian Mathematics Conference2005, SingaporeJuly 20-23.
Marttunen, M. (1994). Assessing argumentation skills among Finnish university students. Learningand Instruction, 4, 175– 191.
Mason, J., Burton, L., & Stacey, K. (1985).Thinking mathematically (Rev. ed.). New York: Addison Wesley.
National Council of Teachers of Mathematics(NCTM).Principles and standards for school mathematics. Reston, VA: NCTM, 2000.
Nattiv, A.(1994).Helping Behaviors and Math Achievement Gain of Student Using Cooperative Learning .The Elementary School Journal, 94(3),285-297.
OECD.(2013). Pisa 2015 draft collaborative problem solving framework. Retrieved Apr 28, 2014, from http://www.oecd.org/pisa/pisaproducts/Draft%20PISA%202015%20Collaborative%20Problem%20Solving%20Framework%20.pdf
Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10),994-1020.
Parker, R. E.(1985).Small-group coopetative learning-improving academic, social gains in the classroom. Nass Bulletin, 69(479),PP.48-57.
Pedemonte, B. (2008). Argumentation and algebraic proof. ZDM Mathematics Education, 40,385-400.
Polya, G. (1954). How to solve it: A new aspect of mathematical method. Princeton, NJ: Princeton University Press.
Putnam, J.W.(1993). Cooperative learning and strategies for inclusion: Celebrating diversity in the classroom. Baltimore, Md.: P. H. Brookes. Pub lication.
Reid, D. A., & Knipping, C. (2010).Argumentation structures.In D. A. Reid & C. Knipping (Eds.), Proof in mathematics education: Research, learning and teaching (pp.179-192). Rotterdam: Sense Publishers.
Reid, D.A. (2002). Conjectures and refutations in grade 5 mathematics. Journal for Research in Mathematics Education, 33(1), 5–29.
Sharan, S., & Shaulov, A.(1990). Cooperative learning , motivation to learn , academic achievement. In S. Sharan(Ed.), Cooperative learning:Theory and Research (pp.1-22). New York: Praeger Publishers.
Simon, M. A., & Blume, G. W. (1996). Justification in the mathematics classroom: A study of prospective elementary teachers. Journal of mathematical behavior, 15(1), 3-31.
Slavin, R. E.(1985).Cooperative learning:Applying contact theory in desegregated schools. Joural of Social Issues, 43-62
Slavin, R. E.(1995). Cooperative Learning: Theroy, Research, and Practice.(2 th ed). Needham Heights, Massachusetts: Allyn and Bacon.
Stylianides, A. J. (2007). Proof and proving in school mathematics.Journal for Research in Mathematics Education, 38(3), 289–321.
Stylianides, A. J., & Ball, D. L. (2008). Understanding and describing mathematical knowledge for teaching: knowledge about proof for engaging students in the activity of proving. Journal of Mathematics Teacher Education 11:307-332.
Toulmin, S. E. (1958). The uses of argument. Cambridge: Cambridge University Press.
U. K. Department for Education. (2013). Mathematics programmes of study: key stages 1 and 2. Retrieved May 1, 2014, from:https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/239129/PRIMARY_national_curriculum_-_Mathematics.pdf
Watson, S.B.(1992). The essen tial elements of cooperative learn ing. The American Biology Teach er, 54(2), 84-87.
Yackel, E., Cobb, P., & Wood, T.(1991).Small-group interactions as a source of learning opportunities in second-grade mathematics
Yang, S. C., & Liu, S. F.(2005). The study of interactions and attitudes of third-grade students' learning information technology via a cooperative approach. Computers in Human Behavior,21(1), 45-72.
Yin, R. K.(2003).Case study research: Design and methods(3rdEdition). California: Sage Publications.