簡易檢索 / 詳目顯示

研究生: 劉鑑鼐
Liou, Jian-Nai
論文名稱: 應用於太陽能發電系統的數位訊號處理器
A Digital Signal Processor for Photovoltaic Generation Systems
指導教授: 馬席彬
Ma, Hsi-Pin
口試委員: 楊家驤
黃柏鈞
吳仁銘
馬席彬
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 75
中文關鍵詞: 數位訊號處理器太陽能發電系統最大功率點追蹤預測式電流控制微處理器局部陰影
外文關鍵詞: Photovoltaic Generation System, Partial Shading, 8051
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現實中,一個太陽能發電系統的運作條件不是時刻穩定的。在太陽能板上的陽光照度不但在整個白天改變而且有時候經過的雲朵或是影子也會改變。為了要滿足這些動態的運作條件,在一個太陽能發電系統中增加一個控制器是有必要的。傳統上,在一個太陽能發電系統中的控制器是以類比電路所實現。在這篇論文中,控制器是由集成數位電路所構成。相較於類比電路,數位電路有較佳的靈活性和較低的複雜度可以在一個太陽能發電系統上實行更多的功能。
    該控制器是可編程的並且有能力以高速來執行多個程式。控制一個太陽能發電系統要執行兩個程式。一個是〝修改版預測式電流控制(MPCC)〞而另一個是〝最大功率點追蹤(MPPT)〞。程式被修改用以適應定點運算和縮短執行時間。
    最終的設計是一個有著時脈100MHz的雙核心處理器位於一個現場可程式閘陣列(FPGA)平台上。它負責控制一個3通道10位元的類比數位轉換器(A/D)在1MHz的取樣頻率下取得必要的資料。主要的輸出是一個有最小精度是0.002占空比的100kHz脈沖寬度調變(PWM)訊號。每個核心有1千位二進位位元組的程式記憶體和256位元組的資料記憶體。一個多核心控制器負責控制核心到核心和核心到外面的交流。數位脈沖寬度調節器(DPWM)根據MPCC和MPPT的計算結果產生一個PWM訊號。MPCC程式搭配一個2千位二進位位元組的查表(LUT)記憶體執行並且當它在100MHz的單核心上操作時花費了2.74μs,而MPPT程式在同樣條件下花費了2.58μs~3.1μs。


    In reality, the operating conditions of a photovoltaic (PV) generation system are not constantly
    stable. The illumination of sunlight on PV panels not only changes throughout the day
    but also changes with the passing of clouds or shadows sometimes. In order to satisfy these
    dynamic operating conditions, adding a controller in a PV generation system is necessary.
    Traditionally, the controller in a PV generation system is realized by analog circuits. In this
    thesis, the controller is composed of integrated digital circuits. Compared with analog circuits,
    digital circuits have more flexibility and less complexity of implementing more functions on
    a PV generation system.
    The controller is programmable and is capable of executing multiple programs at high
    speed. Two programs are executed to control a PV generation system. One is ”modified predictive
    current control (MPCC)” and the other is ”maximum power point tracking (MPPT)”.
    Programs are modified to adapt fixed-point calculation and to shorten execution time.
    The final design is a dual-core processor with 100MHz clock rate on a field-programmable
    gate array (FPGA) platform. It is responsible for controlling a 3-channel 10-bit analog-todigital
    converter (A/D) with 1MHz sampling rate to obtain the required data. The main output
    is a 100kHz pulse-width modulation (PWM) signal with minimum precision of 0.002 duty
    cycle. Each core has program memory with 1KB and data memory with 256bytes. A multicore
    control unit is responsible for controlling communication between core to core and core
    to periphery. Digital pulse-width modulator (DPWM) generates a PWM signal according to
    the calculation results of MPCC and MPPT. The MPCC program is executed with a 2KB
    look-up table (LUT) memory and consumes 2.74s when operating at 100 MHz on a single
    core while the MPPT program consumes 2.58s  3.1s under the same conditions.

    Abstract i 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Photovoltaic Generation System 5 2.1 System Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Photovoltaic Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.1 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.2 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 DC/DC Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.1 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.2 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Algorithms for Digital Controller . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4.1 Predictive Current Control . . . . . . . . . . . . . . . . . . . . . . . 10 2.4.2 Maximum Power Point Tracking . . . . . . . . . . . . . . . . . . . . 11 2.5 Analog-to-Digital Converter . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5.1 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5.2 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.6 Digital Pulse-Width Modulator . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.6.1 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.6.2 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 Digital Signal Processor 17 3.1 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3 Modified Microcontroller [1, 2] . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3.2 Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.4 Program Memory and Look-Up Table Memory . . . . . . . . . . . . . . . . 24 3.5 Multi-Core Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.6 Digital Pulse-Width Modulator . . . . . . . . . . . . . . . . . . . . . . . . . 28 4 Design Flow 29 4.1 Requirement for Digital Signal Processor . . . . . . . . . . . . . . . . . . . 29 4.2 Basic Calculation Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3 Calculation Data Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.4 Algorithm to Assembly Code . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.5 Timing of Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.6 Speed Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.6.1 Speed Problem and Solutions . . . . . . . . . . . . . . . . . . . . . 45 4.6.2 Software Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.6.3 Modified Predictive Current Control . . . . . . . . . . . . . . . . . . 47 4.6.4 Modified Maximum Power Point Tracking . . . . . . . . . . . . . . 51 4.7 Communication with Analog-to-Digital Converter . . . . . . . . . . . . . . . 52 5 Simulation and Implementation Results 55 5.1 Platform of Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.2 Field-Programmable Gate Array Simulation Results . . . . . . . . . . . . . . 57 5.3 Photovoltaic Generation System Implementation Results . . . . . . . . . . . 61 5.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6 Future Work and Conclusion 69 6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

    [1] J. Simsic and S. Teran. (2001, August) 8051 Core Specification. [Online]. Available:
    http://www.opencores.org
    [2] J. Simsic and S. Teran. (2002, October) Oc8051 Design Document. [Online]. Available:
    http://www.opencores.org
    [3] C.-T. Lee, J.-N. Liou, H.-P. Ma, P.-C. Huang, and P.-T. Cheng, “Implementation of the
    digital control algorithm for the maximum power point tracking DC module,” in IEEE
    Workshop on Control and Modeling for Power Electronics (COMPEL), Kyoto Prefecture,
    Japan, June 2012, pp. 1–6.
    [4] SMIMS Corporation, VEX-USB hardware installation manual v3.1, Taipei, Taiwan, January
    2010.
    [5] M. Bodur and M. Ermis, “Maximum power point tracking for low power photovoltaic
    solar panels,” in IEEE Mediterranean Electrotechnical Conference (MELECON), Antalya,
    Turkey, April 1994, pp. 758–761.
    [6] P. Midya, P. Krein, R. Turnbull, R. Reppa, and J. Kimball, “Dynamic maximum power
    point tracker for photovoltaic applications,” in IEEE Power Electronics Specialists Conference
    (PESC), Verbano-Cusio-Ossola, Italy, June 1996, pp. 1710–1716.
    [7] R. Leyva, C. Alonso, I. Queinnec, A. Cid-Pastor, D. Lagrange, and L. Martinez-
    Salamero, “MPPT of photovoltaic systems using extremum - seeking control,” IEEE
    Transactions on Aerospace and Electronic Systems (AES), vol. 42, no. 1, pp. 249–258,
    January 2006.
    [8] A. Aziz, K. Kassmi, M. Hamdaoui, and F. Olivie, “Design and modelling of a photovoltaic
    system optimized by an analog control provided with a detection circuit of dysfunction
    and restarting of the system,” in IEEE International Conference on Design and
    Technology of Integrated Systems in Nanoscale Era (DTIS), Rabat-Sale-Zemmour-Zaer,
    Morocco, September 2007, pp. 233–236.
    [9] N. Khaehintung, T. Wiangtong, and P. Sirisuk, “FPGA implementation of MPPT using
    variable step-size p and o algorithm for PV applications,” in IEEE International Symposium
    on Communications and Information Technologies (ISCIT), Bangkok, Thailand,
    September 2006, pp. 212–215.
    [10] H.-L. Jou,W.-J. Chiang, and J.-C.Wu, “A novel maximum power point tracking method
    for the photovoltaic system,” in IEEE International Conference on Power Electronics
    and Drive Systems (PEDS), Bangkok, Thailand, November 2007, pp. 619–623.
    [11] C.-C. Hua and Y.-C. Chiou, “Digital photovoltaic power conversion system with intelligent
    control approach,” in IEEE Conference on Industrial Electronics and Applications
    (ICIEA), Shaanxi, China, May 2009, pp. 2044–2048.
    [12] K. Kroeger, S. Choi, A. Bazzi, B. Johnson, and P. Krein, “A digital implementation of
    continuous-time ripple correlation control for photovoltaic applications,” in IEEE Power
    and Energy Conference at Illinois (PECI), Illinois, USA, February 2010, pp. 7–11.
    [13] S. Patel and W. Shireen, “Fast converging digital MPPT control for photovoltaic (PV)
    applications,” in IEEE Power and Energy Society (PES) General Meeting, California,
    USA, July 2011, pp. 1–6.
    [14] B. Reddy, P. Jambholkar, P. Narayana, and K. Reddy, “MPPT algorithm implementation
    for solar photovoltaic module using microcontroller,” in IEEE India Conference (INDICON),
    Andhra Pradesh, India, December 2011, pp. 1–3.
    [15] M. Tham. (2009, August) Dealing with measurement noise. [Online]. Available:
    http://lorien.ncl.ac.uk/ming/filter/filewma.htm
    [16] Intel Corporation, MCS-51 microcontroller family user’s manual, California, USA,
    February 1994.
    [17] F. de Lima, E. Cota, L. Carro, M. Lubaszewski, R. Reis, R. Velazco, and S. Rezgui, “Designing
    a radiation hardened 8051-like micro-controller,” in IEEE International Symposium
    on Integrated Circuits and Systems Design (SBCCI), Amazonas, Brazil, September
    2000, pp. 255–260.
    [18] C. Wong and A. Martin, “High-level synthesis of asynchronous systems by data-driven
    decomposition,” in IEEE Design Automation Conference (DAC), California, USA, June
    2003, pp. 508–513.
    [19] C.-J. Chen, W.-M. Cheng, R.-F. Tsai, H.-Y. Tsai, and T.-C. Wang, “A pipelined asynchronous
    8051 soft-core implemented with balsa,” in IEEE Asia Pacific Conference on
    Circuits and Systems (APCCAS), Macao, China, November 2008, pp. 976–979.
    [20] S. Yuanyuan, L. Jia, and L. Runsheng, “Single-chip speech recognition system based
    on 8051 microcontroller core,” IEEE Transactions on Consumer Electronics (T-CE),
    vol. 47, no. 1, pp. 149–153, February 2001.
    [21] N. Kumar, V. Sadasivam, and K. Prema, “Design and simulation of fuzzy controller for
    closed loop control of chopper fed embedded dc drives,” in IEEE International Conference
    on Power System Technology (POWERCON), Singapore, November 2004, pp.
    613–617.
    [22] D. G. Lee, S. M. Jung, and M.-S. Lim, “System on chip design of embedded controller
    for car black box,” in IEEE Intelligent Vehicles Symposium (IV), Istanbul, Turkey, June
    2007, pp. 1174–1177.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE