研究生: |
陳慧璇 Hui-hsuen Chen |
---|---|
論文名稱: |
硫-鈀系統直接電鍍機構之研究 Mechanism Research of Direct Plating by Pd/S Catalyst |
指導教授: |
萬其超
Chi-chao Wan 王詠雲 Yung-yun Wang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2000 |
畢業學年度: | 88 |
語文別: | 中文 |
論文頁數: | 85 |
中文關鍵詞: | 直接電鍍 、直接金屬化 、直接電鍍機構 |
外文關鍵詞: | Direct plating, Mechanism Research of Direct Plating, Crimson process |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Crimson直接電鍍製程是由Shipley公司於1990年所提出之印刷電路板表面金屬化流程,用以取代無電鍍銅法。一般人常認為此一直接電鍍程序如同其它直接電鍍法,乃因 “促進化” 後使非導體上形成一硫/鈀導電膜,而此導電膜造成基材得以進行電鍍。本論文以實驗證明:Crimson直接電鍍法並非以導電度促使其得以進行。
另一方面,以循環伏特法驗證硫-鈀直接電鍍系統乃經由硫離子架橋作用使得其銅還原反應發生於較Shadow直接電鍍系統還要正的電位。
前人的研究認為:PdS是硫化後基板在浸入鍍液後,由其中的硫酸根促使形成的。但吾人發現不含硫酸根的焦磷酸銅鍍液,仍可進行直接電鍍速率,只是速率較慢;若是將硫化後的基板浸入含硫酸根之溶液後,再於焦磷酸銅鍍液中進行電鍍,則可加快電鍍速率。因此推斷硫化後的基板浸入含硫酸根溶液後,可能使膠體內硫-鈀的鍵結形態發生變化。
由IR分析中發現:硫化後再浸入硫酸銅鍍液有兩種可能現象:(a) 硫-鈀鍵結形態改變。硫化後的硫-鈀的吸附態轉變為鍵結形態,此形態可能是Pd4S,但仍須更有力之證據;(b) 具直接電鍍能力的硫-鈀層對於硫酸根具吸附能力。
將Shipley加成法專利製程中,於硫化後多加入一硫酸槽,依照本實驗的說法,Pd-S之鍵結態可在上光阻之步驟前形成,並發現此舉可加速直接電鍍速率,且對於在曝光、顯影的過程具穩定硫-鈀層作用,但仍須先克服其再現性的問題才能得到肯定的解釋。
1. 林水春, 印刷電路板設計與製作, p.4, 全華圖書公司, 台北市 (1993).
2. 鍾俐娟, “多層印刷電路板市場與技術發展現況”, 工業材料, 118, 57 (1996).
3. V. D. Meerakker, ”On the Mechanism of Electroless Plating. I. Oxidation of Formaldehyde at Different Electrode Surface”, J. Appli. Electrochem., 11, 387 (1981).
4. A. Huang, “Electroless Copper Deposition with Hypophosphite as Reducing Agent”, Plat. Surf. Finish., 75, 62 (1988).
5. D. A. Radovsky, and B. J. Ronkese, “Method of Electroplating on a Dielectric Base”, U.S. Patent No. 3,099,608 (1963).
6. H. Nakahara, “Direct Metallization Technology, Part I”, Printed Circuit Fabrication, Oct., 16 (1992).
7. H. Nakahara, “Direct Metallization Technology, Part II”, Printed Circuit Fabrication, Nov., 18 (1992).
8. D. M. Morrissey, P. E. Takach, and R. J. Zeblisky, “Method for Electroplating Non-metallic Surfaces”, U.S. Patent No. 4,683,036 (1987).
9. K. Oahayashi, “Method for Directly Electroplating a Dielectric Substrate and Plated Substrate So Produces”, U.S. Patent No. 5,017,517 (1991).
10. Sachiko ono, Tetsuya Osaka, Kazuhisa Naitoh, and Yutaka Nakagishi, J. Electrochem. Soc.,146, 160 (1999).
11. Dacong Weng and Uziel Landau, “Direct Electroplating on Nonconductors”, J. Electrochem. Soc., 142, 8, 2598 (1995).
12. J. J. Bladon, and W. Mass, “Pretreatment for Electroplating Process”, U.S. Patent No. 4,895,739 (1990).
13. H. Meyer, R. J. Nichols, N. Schröer, and L. Stamp, “The Use of Conducting Polymers and Colloids in the Through Hole Plating of Printed Circuit Boards”, Electrochim. Acta, 39, 1325 (1994).
14. C. E. Thorn, F. Polakovic, and C. A. Mosolf (Electrochemicals, Shadow), “Composition and Process for Preparing a Non-conductive Substrate for Electroplating”, U.S. Patent 5,389,270 (1995).
15. J. Hupe and W. Kronenberg (Blasberg, DMS), “Through-Hole Plate Printed Circuit Board with Resist and Process for Manufacturing Same”, U.S. Patent 5,373,629 (1994).
16. 郭茂榮, “導電高分子之直接電鍍法”, 電路板資訊, 61, 57 (1993).
17. 楊勝俊、劉宜樺, “印刷電路板用光阻劑”, 化工資訊, 4, 7 (1999).
18. 林水春, 印刷電路板設計與製作, p.117, 全華圖書公司, 台北市 (1993).
19. C. R. Shipley, “Method of Electroless Deposition on a Substrate and Catalyst Solution Therefore”, U.S. Patent No. 3,011,920 (1961).
20. E. Matijevic, A. M. Poskanzer, and P. Zuman, “The Characterization of the Stannous Chloride / Palladium Chloride Catalysts for Electroless Plating”, Plat. Surf. Finish., 62, 958 (1975).
21. G. Schmid, Clusters and Colloids : From Theory to Application, p459, VCH Publishers, New York, NY (USA) (1994).
22. 莊達人, “錫鈀膠體(II)”, 電路板資訊, 57, 46 (1992).
23. A. Rantell, and A. Holtzman, “Mixed Stannous Chloride-Palladium Chloride Activators - A Study of Their Formation and Nature”, Plating, 61, 623 (1974).
24. A. Rantell, and A. Holtzman, “Mixed Stannous Chloride-Palladium Chloride Activators - A Study of Their Formation and Nature”, Plating, 61, 623 (1974).
25. Y. H. Wang, and C. C. Wan, “The Kinetics of PdCl2/SnCl2 Activating Solutions for Electroless Plating”, Plat. Surf Finish., 89, 59 (1982).
26. 張美濴、李錫隆, “有機金屬簇的化學鍵結理論”, 化學, 51, 202 (1993).
27. R. L. Cohen, and K. W. West, “Generative and Stabilizing Process in Tin-Palladium Sol Sensitizers”, J. Electrochem. Soc., 120, 502 (1973).
28. R. L. Cohen, R. L. Meek, K. W. West, “Sensitization with Palladium-Tin Colloids, I : Role of Rinse and Accelerator Steps”, Plat. Surf. Finish., 63, 52 (1976).
29. R. L. Cohen, and R. L. Meek, “Role of Rinsing in Palladium-Tin Colloid Sensitizing Process II. An Improved Processing Sequence”, Plat. Surf. Finish., 63, 47 (1976).
30. R. L. Meek, “A Rutherfold Scattering Study of Catalyst Systems for Electroless Cu Plating”, J. Electrochem. Soc., 122, 1177 (1975).
31. 楊欽雄, 非導體表面直接電鍍銅之研究, 博士論文, 國立清華大學, 中華民國台灣 (1998).
32. M. Gulla, “Additive Plating Process”, U.S. Patent No. 5,391,421 (1995).
33. 楊世銘, “直接電鍍Conductron DP之簡介”, 電路板資訊, 80, 64 (1993).
34. G. L. Miessler, and D. A. Tarr, Inorganic Chemistry, p200, Prentice-Hall, New Jersey (1990).
35. E. Eriksrud, “Effect of Halide Ions on the Cathodic Ni(II)/Ni(Hg) Reaction”, J. Electroanal. Chem. Interfacial Electrchem., 49, 77 (1974).
36. E. D. Moorhead and S. Lipsczey, “Rate-Catalyzed Reversible Reduction of Antimony(III) at the DME Induced by Trace Thiosulfate in Perchloric Acid. Comparison with Bromide”, Anal. Lett., 6, 821 (1973).
37. C. H. Yang, Y. Y. Wang, and C. C. Wan, “A Research for the Mechanism of Direct Copper Plating via Bridging Ligands”, J. Electrochem. Soc., 143, 3521 (1996).
38. 江怡穎, 直接電鍍應用於印刷電路板加成法之研究, 碩士論文, 國立清華大學, 中華民國台灣 (1998).
39. A. Haim, “Role of the Bridging Ligand in Inner-Sphere Electron-Transfer Reactions”, Acc. Chem. Res., 8,264 (1975).
40. 王建成, 板面加層基之直接電鍍行為探討, 碩士論文, 國立清華大學, 中華民國台灣 (1997).
41. J. J. Bladon, A. Lamola, F. W. Lytle, W. Sonnenberg, J. N. Robinson, and G. Philipose, “A Palladium Sulfide Catalyst for Electrolytic Plating”, J. Electrochem. Soc., 143, 1206 (1996).
42. C. Faure and C. Delmas, “Characterization of a turbostratic α-nickel hydroxide quantitatively obtained from an NiSO4 solution”, J. Power Sources, 35, 279 (1991).
43. R.Eskenazi, J. Raskovan and R. Levitus, “Sulphato Complexes of Palladium (Ⅱ)”, J. Inorg. Nucl. Chem. 28, 521 (1996).
44. 王琦,白金與黃金電極上次電位沉積以及晶面位向對電化學反應之影響,博士論文, 國立清華大學, 中華民國台灣 (1999).
45. C. E. Thorn, F. Polakovic, and C. A. Mosolf (Electrochemicals, Shadow), “Composition and Process for Preparing a Non-conductive Substrate for Electroplating”, U.S. Patent 5,389,270 (1995).
46. H. Nakahara, Printed Crcuits Handbook, 4th ed., “PWB Manufacture Using Fully Electroless Copper”, Chap. 20, McGraw-Hill, New York (1995).
47. H. Akahoshi, K. Murakami, M. Wajima, and S. Kawakubo, “A New Fully Additive Fabrication Process for Printed Wiring Boards”, IEEE Trans. Comp., Hybrids, Manufact. Technol., CHMT-9, 181 (1986).
48. P. E. Kukanskis, and H. Rhodenizer, “Method for Manufacture of Printed Circuit Boards”, U.S. Patent No. 4,931,148 (1990).
49. Yi-ying Chiang, Yun-yung Wang, and Chi-chao Wan, “Formation of PdS Compounds in the Direct Metallization via Pd/Sn Catalyst Activation”, J. Electrochem. Soc., 146, 3255 (1999).
50. T. Osaka, and H. Takematsu, “A Study on Activation and Acceleration by Mixed PdCl2/SnCl2 catalysts for Electroless Metal Deposition”, J. Electrochem. Soc., 127, 1021 (1980).
51. Spectroscopy Properties of Inorganic and Organometallic Compounds, 3, the Chemical Society, (1969).
52. M. P. Soriaga, “Surface Coordination Chemistry of Monometallic and Bimetallic Electrocatalysts”, Chem. Rev., 90, 771 (1990).
53. Spectroscopy Properties of Inorganic and Organometallic Compounds, 10, the Chemical Society, (1976).
54. Spectroscopy Properties of Inorganic and Organometallic Compounds, 6, the Chemical Society, (1973).
55. Spectroscopy Properties of Inorganic and Organometallic Compounds, 4, the Chemical Society, (1970).
56. W. D. Honnick, and J. J. Zuckerman, “Tin(II) Hydroxide”, Inorg. Chem., 15, 3034 (1976).
57. Spectroscopy Properties of Inorganic and Organometallic Compounds, 9, the Chemical Society, (1975).
58. D. M. Adams and J. B. Cornell, “Metal-Sulphur Vibrations. Part I.”, J. Chem. Soc. (A), 884 (1967).
59. J. R. Durig, R. Layton, D. W. Sink and B. R. Mitchell, “Far Infrared spectra of Palladium compounds-Ⅰ. The influence of ligands upon the palladium chloride stretching frequency ”, Spectrochemica Acta, 21, 1367 (1965).
60. P. J. Hendra and Z. Jovic, “The laser Raman and infra-red spertra of some thiourea and selenourea complexes of platinum (Ⅱ) and palladium (Ⅱ)”, Spectrochemica Acta , 24A, 1713 (1968).
61. C. D. Flint and M. Goodgame, “Infrared Spetra (400-135cm-1) of Some Thiourea Co-ordination Complexes”, J. Chem. Soc. (A), 744 (1966).
62. M. Tranquille et M. T. Forel, “Etude des specters infrarouges et Raman des composes de coordination PdⅡL2X2 trans (4000-40cm-1) L=(CH3)2S, (CD3)2S, (CH3)2SO, (CD3)2SO; X=Cl, Br” , Spectrochemica Acta , 28A, 1305 (1972).
63. Giuseppe Marcotrigiano, Raffaele Battistuzzi and Giorgio Peyronel, “Spectrochemical studies on the ethylthiourea complexes of palladium (Ⅱ) and platinum (Ⅱ): M2(Etu)2X4(X=Cl, Br, I) and M(Etu)4A2(A=Cl, Br, I, ClO4, BF4, CF3COO)”, Spectrochemica Acta , 32A, 291 (1976).
64. Carlo Preti and Giuseppe Tosi, “Tautomertic equilibrium study of thiazolidine-2-thione metal complexes of the deprotonated ligand”, CAN. J. CHEM. 54,1558 (1976).