研究生: |
王琬婷 Wang, Wan-Ting |
---|---|
論文名稱: |
液液微萃取法搭配極致效能液相層析儀分析水樣中的硝基酚類化合物 Determination of nitrophenols in water sample using dispersive liquid-liquid microextraction combined with UPLC |
指導教授: |
洪嘉呈
Horng, Jia-Cherng |
口試委員: |
黃賢達
Huang, Shang-Da 陳珮珊 Chen, Pei-Shan |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 94 |
中文關鍵詞: | 分散液液微萃取 、硝基酚類化合物 、低濃度界面活性劑輔助乳化 、垂直震盪器輔助乳化 |
外文關鍵詞: | dispersive liquid-liquid microextraction, nitrophenols, water with low concentration surfactant as disperse solvent, up-and-down shaker assisted microextraction |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
硝基酚類化合物是難降解性的環境汙染物之一,硝基酚類化合物廢水主要來源是化工製造染料、農藥、醫藥等。本文針對四種分析物對硝基酚、2, 4-二硝基酚、3-甲基-4- 硝基酚以及2-甲基-4, 6-二硝基酚,被美國環境保護局列在優先列管之汙染物。
由於本實驗是在先前開發出垂直震盪器(Up and down shaker assisted emulsion)以及低濃度界面活性劑水溶液輔助乳化液液微萃取(Water with low concentration of surfactant as dispersed solvent-assisted emulsion dispersive liquid-liquid microextraction)。為比較以及證實此二方法對於不同分析物於環境水樣中的應用性,本篇論文針對垂直振盪器及低濃度界面活性劑水溶液輔助乳化液液微萃取做萃取條件最佳化,應用於三種環境水體溪水、湖水、田間水中。搭配的偵測器則是極致效能液相層析儀。
本實驗在垂直震盪器的部分,選用低毒性的十碳醇做為萃取溶劑,以垂直震盪器震盪3分鐘乳化,免去分散劑的使用,大大降低了對環境的汙染,同時也省去了人力手搖,增加了實驗的方便性。
低濃度界面活性劑水溶液的部分,選用低毒性的八碳醇做為萃取溶劑,加入1 mg L-1 Tween 40 150 μL於微量離心管中,以注射針來回抽取四下注入水樣中即呈現乳化,不僅免去毒性高的分散劑使用,相較於垂直震盪器等輔助乳化法顯著地節省了萃取時間。
兩個方法的偵測極限分別是垂直震盪器0.6 – 2.6 μg L-1低濃度界面活性劑水溶液0.1 – 1.3 μg L-1。 相對標準偏差則分別在3.0 – 5.0 % 以及4.4 – 6.0 % 之間。總體而言,垂直震盪輔助乳化法有較佳的精密度,低濃度界面活性劑水溶液輔助乳化法則有較好的靈敏度及較低的偵測極限。
Nitrophenolic compound are a group of difficulty degraded pollutant. They comes from chemical industry, dyes, agriculture, medicine and other industries. In this study, we choose 4 compound 4-nitrophenol, 2, 4-dinitrophenol, 3-methyl-4-nitrophenol, and 2-methyl-4, 6-dinitrophenol as our analyst which are also list on priority pollutant of the US environmental Protection Agency.
Our research group had developed two method—up and down shaker assisted emulsion and water with low concentration surfactant as dispersed solvent-assited emulsion dispersive liquid-liquid microextraction.
For the purpose of comparing above two method and applying to varies environmental water sample, we first optimize two methods. Then we apply these two methods to three environmental water samples, river water, lake water and field water, combined HPLC as detector.
The part of up and down shaker assisted emulsion, we choose 1-decanol as extraction solvent. Assist emulsion of up and down shaker, we eliminate using organic solvent as disperser. The use of up and down shaker not only decrease harm to environment, also increase convenience to experiment operator.
The part of water with low concentration surfactant, we choose 1-octanol as extraction solvent. Mix extraction solvent with 1 mg L-1 Tween 40 150 μL by the use of microinjection needle drawing back and forth four times. Emulsion is complete when we inject above mixture into water sample. This method replaces harmful organic solvent into low toxic and concentration surfactant as disperser. Comparing to shaker-assisted emulsion, this method avoid the time of emulsion.
For up and down shaker assisted-emulsion, detection limits in the range of 0.6 – 2.6 μg L-1, precision of the method ranged from 3.0 – 5.0 %. Water with low concentration surfactant as disperser emulsion, detection limits in the range of 0.1 – 1.3 μg L-1, and the precision of the method ranged from 4.4 – 6.0 %.
Generally speaking, assist of up and down shaker has better precision, and water with low concentration surfactant assisted emulsion has better sensitivity and lower detection limits.
[1] EPA, (1979).
[2] EPA, (2009).
[3] 中華民國行政院環境保護署環境檢驗所,「水中酚類化合物檢測方法-氣相層析儀/火焰離子化偵測器、電子捕捉偵測器法(NIEA W522.51C)」, 民國100年
[4] 中華民國行政院環境保護署環境檢驗所,「事業廢棄物萃出液中半揮發性有機物檢測方法-氣相層析質譜儀偵測法(NIEA R814.11B)」, 民國91年
[5] EPA, (2000).
[6] M.L. TAINTER, M.D.A.B. STOCKTON, M.D.W.C. CUTTING, JAMA (1933).
[7] W.C. CUTTING, M.D.H.G. MEHRTENS, M.D.M.L. TAINTER, JAMA (1933).
[8] F. W. Kutz, B. T. Cook, O.D. Carter-Pokras, Et al., J. Toxicol. Environ. Health, 1992, 37, 277.
[9] C.R.E. Directive 79/117/EEC, Directive 91/414/EE, Council Regulation 304/2003/EC.
[10] UNEP, (1992).
[11] S.A. Network, (2011).
[12] J.D. Carrillo, M.P. Martinez, M.T. Tena, J Chromatogr A 1181 (2008) 125.
[13] A. Beyer, M. Biziuk, Food Chemistry 108 (2008) 669.
[14] D.Bertelli, G. papotti, M. Lolli, A.G. Sabatini, M. Plessi, Food Chemistry 108 (2008) 297.
[15] J. Pawliszyn, Analytical Chemistry 62 (1990) 2145.
[16] R.C. Galipo, A.J. Canhoto, M.D. Walla, S.L. Morgan, Journal of Chemical Education (1999).
[17] E. Fries, W. Puttmann, Anal Bioanal Chem 386 (2006) 1497.
[18] M. Ormsby, Journal of the American Institute for Conservation 44 (2005) 13.
[19] M.A.J.a.F.F. Cantwell, Anal. Chem 68 (1996) 2236.
[20] Y. He, H.K. Lee, Anal. Chem 68 (1997) 4636.
[21] Y. He, Y.J. Kang, J Chromatogr A 1133 (2006) 35.
[22] L.L. Qian, Y.Z. He, J Chromatogr A 1134 (2006) 32.
[23] Y. He, A. Vargas, Y.J. Kang, Anal Chim Acta 589 (2007) 225.
[24] F.J. Pereira, C. Bendicho, N. Kalogerakis, E. Psillakis, Talanta 74 (2007) 47.
[25] L. Xu, C. Basheer, H.K. Lee, J Chromatogr A 1152 (2007) 184.
[26] M. Zhang, J. Huang, C. Wei, B. Yu, X. Yang, X. Chen, Talanta 74 (2008) 599.
[27] S. Pedersen-Bjergaard, K.E. Rasmussen, Anal. Chem 71 (1999) 2650.
[28] L. Zhu, L. Zhu, H.K. Lee, Journal of Chromatography A 924 (2001) 407.
[29] K.E. Rasmussen, S. Pedersen-Bjergaard, M. Krogh, H.G. Ugland, T. Grønhaug, Journal of Chromatography A 873 (2000) 3.
[30] G. Shen, H.K. Lee, Anal. Chem 74 (2002) 648.
[31] L. Hou, H.K. Lee, Journal of Chromatography A 976 (2002) 377.
[32] L. Hou, H.K. Lee, Anal. Chem 75 (2003) 2784.
[33] X. Jiang, H.K. Lee, Anal. Chem 77 (2005) 1689.
[34] X. Jiang, H.K. Lee, Anal. Chem 76 (2004) 5591.
[35] M.B. Mahaveer, S.D. Huang, M.R. Fuh, Analytica Chimica Acta 555 (2006) 139.
[36] M.B. Melwanki, S.D. Huang, M.R. Fuh, Talanta 72 (2007) 373.
[37] M. Rezaee, Y. Assadi, M.R. Milani Hosseini, E. Aghaee, F. Ahmadi, S. Berijani, J Chromatogr A 1116 (2006) 1.
[38] H. Farahani, P. Norouzi, R. Dinarvand, M.R. Ganjali, J Chromatogr A 1172 (2007) 105.
[39] D. Nagaraju, S.D. Huang, J Chromatogr A 1161 (2007) 89.
[40] E. Zhao, W. Zhao, L. Han, S. Jiang, Z. Zhou, J Chromatogr A 1175 (2007) 137.
[41] P. Liang, J. Xu, Q. Li, Anal Chim Acta 609 (2008) 53.
[42] M.A. Farajzadeh, D. Djozan, R.F. Bakhtiyari, Talanta 81 (2010) 1360.
[43] M.R. Khalili Zanjani, Y. Yamini, S. Shariati, J.A. Jonsson, Anal Chim Acta 585 (2007) 286.
[44] M.R. Khalili-Zanjani, Y. Yamini, N. Yazdanfar, S. Shariati, Anal Chim Acta 606 (2008) 202.
[45] M.I. Leong, S.D. Huang, J Chromatogr A 1211 (2008) 8.
[46] C.C. Chang, S.Y. Wei, S.D. Huang, J Sep Sci 34 (2011) 837.
[47] A. Saleh, Y. Yamini, M. Faraji, M. Rezaee, M. Ghambarian, J Chromatogr A 1216 (2009) 6673.
[48] Y.S. Su, J.F. Jen, J Chromatogr A 1217 (2010) 5043.
[49] X.Z. Hu, J.H. Wu, Y.Q. Feng, J Chromatogr A 1217 (2010) 7010.
[50] L. Guo, H.K. Lee, J Chromatogr A 1218 (2011) 5040.
[51] J. Regueiro, M. Llompart, C. Garcia-Jares, J.C. Garcia-Monteagudo, R. Cela, J Chromatogr A 1190 (2008) 27.
[52] A.R. Fontana, R.G. Wuilloud, L.D. Martinez, J.C. Altamirano, J Chromatogr A 1216 (2009) 147.
[53] W.X. Wang, T.J. Yang, Z.G. Li, T.T. Jong, M.R. Lee, Anal Chim Acta 690 (2011) 221.
[54] W.C. Tsai, S.D. Huang, J Chromatogr A 1216 (2009) 5171.
[55] E. Yiantzi, E. Psillakis, K. Tyrovola, N. Kalogerakis, Talanta 80 (2010) 2057.
[56] S.Y. Wei, M.I. Leong, Y. Li, S.D. Huang, J Chromatogr A 1218 (2011) 9142.
[57] R.J. Chung, M.I. Leong, S.D. Huang, J Chromatogr A 1246 (2012) 55.
[58] M.W. Shu, M.I. Leong, M.R. Fuh, S.D. Huang, Analyst 137 (2012) 2143.
[59] Y.C. Ku, M.I. Leong, W.T. Wang, S.D. Huang, J Sep Sci (2013).
[60] Y. Li, P.S. Chen, S.D. Huang, J Chromatogr A (2013).
[61] http://www.ch.ntu.edu.tw/~cymou/micell.htm
[62] http://www.ch.ntu.edu.tw/~cymou/micell.htm
[63] http://en.wikipedia.org/wiki/Hydrophilic-lipophilic_balance
[64] C.P. Sanz, Z.S. Ferrera, J.J.S. Rodr´guez, Analytica chimica acta 470 (2002) 205.
[65] L.C. Seronero, M.E.F. Laespada, J.L.P. Pavon, B.M. Cordero, Journal of Chromatography A 897 171.
[66] Z.S.F. A. Eiguren Fernández, J.J. Santana Rodr guez, Journal of chimica acta 433 237.
[67] H.T. Hiroto Watanabe, Talanta 25 (1978) 585.
[68] T. Saitoh, W.L. Hinze, Anal. Chem 63 (1991) 2520.
[69] A. Sarafraz Yazdi, Z. Es'haghi, J Chromatogr A 1094 (2005) 1.
[70] C. Wu, N. Liu, Q. Wu, C. Wang, Z. Wang, Anal Chim Acta 679 (2010) 56.
[71] Q. Wu, Q. Chang, C. Wu, H. Rao, X. Zeng, C. Wang, Z. Wang, J Chromatogr A 1217 (2010) 1773.
[72] J. Cheng, G. Matsadiq, L. Liu, Y.W. Zhou, G. Chen, J Chromatogr A 1218 (2011) 2476.
[73] J. Cheng, Y. Xia, Y. Zhou, F. Guo, G. Chen, Anal Chim Acta 701 (2011) 86.
[74] Z.H. Yang, Y.L. Lu, Y. Liu, T. Wu, Z.Q. Zhou, D.H. Liu, J Chromatogr A 1218 (2011) 7071.
[75] Z.H. Yang, P. Wang, W.T. Zhao, Z.Q. Zhou, D.H. Liu, J Chromatogr A (2013).
[76] Y. Zhang, H.K. Lee, J Chromatogr A 1274 (2013) 28.
[77] K.D. Buchholz, J. Pawliszyn, Environ. Sci 27 (1993) 2844.
[78] K.D. Bychholz, J. Pawliszyn, Anal. Chem 66 (1994) 160.
[79] E.P. A. Penalver, F. Borrull, R.M. Marce, J Chromatogr A 953 (2002) 79.
[80] M. Saraji, M. Bakhshi, J Chromatogr A 1098 (2005) 30.
[81] C.Y. Lin, S.D. Huang, Journal of Chinese Chemical Society 55 (2008) 740.
[82] M. Saraji, M. Marzban, Anal Bioanal Chem 396 (2010) 2685.