簡易檢索 / 詳目顯示

研究生: 魏國智
Wei, Guo-Chih
論文名稱: 以鎖相迴路驅動之CMOS微質量電容式感測器陣列
A Phase-Locked-Loop Based CMOS Capacitive Mass Sensor Array
指導教授: 盧向成
Lu, Shiang-Cheng
口試委員: 邱一
方維倫
盧向成
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 78
中文關鍵詞: 質量感測鎖相迴路電容式
外文關鍵詞: Mass Sensor, Phase-Locked-Loop, Capacitive
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們透過CMOS-MEMS整合技術將電容式的MEMS震盪器結構與Phase-Looked Loop整合在同一顆晶片,本論文首次提出以鎖相迴路的輸出來驅動MEMS震盪器結構,藉由鎖相迴路相位對相位的追蹤,可直接在鎖相迴路的輸出端讀出震盪器的震動頻率。再者,我們另外在MEMS震盪器結構上做oxide或parylene的沉積,其質量的變化造成感測結構的頻率變化,進而在鎖相迴路的輸出端得到結果,以達成質量感測的目的。

    在鎖相迴路方面,我們是以全類比式的設計做為此次的研究架構,主要是由相位偵測器(Phase Detector)、壓控震盪器(VCO)以及迴路濾波器(Loop Filter)所組成,內容包含了穩定度的分析,迴路的模擬以及量測等等。

    而在MEMS結構震盪器方面,我們總共設計了四種不同的結構,每種結構各16個cell,總共8 x 8個感測器,設計的震動頻率分別為228kHz、449kHz、614kHz以及796kHz,感測度分別為3.5 Hz/pg、8.67 Hz/pg、17 Hz/pg以及24.42 Hz/pg,結構的面積則大約為100µm x 30µm,其內容包含了MEMS震盪器結構的震盪頻率、位移、感測電容值以及感測度的模擬與量測,也針對一些遇到的問題進行了分析與討論。

    最後,在質量感測部份我們選用了parylene做為沉積的質量塊,主要的原因他能在室溫下進行沉積,對於研究來說是較為方便的,我們也實際量測到了質量的變化所造成的頻率變化,達成了質量感測的目的。


    Capacitive MEMS oscillator structure and Phase-Looked Loop are integrated in the same chip through the CMOS-MEMS integration technology. This work is the first proposed to use the PLL output to drive the MEMS oscillator structure. By deposition of oxide or parylene on MEMS oscillator structures, it will change the structure frequency caused by the change of mass, and thus it shows the result in the output of the phase-locked loop to achieve the purpose of mass sensing.

    In the phase-locked loop, we use a full analog design in this work, which mainly contains a phase detector, a voltage-controlled oscillator and a loop filter. The thesis includes stability analysis, circuit simulation and measurement.

    In the MEMS oscillator, we design four different structures, with each having a 4×4 array on the chip to form a 8×8 array. The resonant frequencies are 228 kHz, 449 kHz, 614 kHz and 796 kHz, and the simulated sensitivities are 3.5 Hz/pg, 8.67 Hz/pg, 17 Hz/pg and 24.42 Hz/pg. The area of the structure is 100μm×30μm. This thesis includes the simulation and measurement of the resonant frequency, displacement, capacitance and sensitivity of the MEMS structure. And we also analyze and discuss the problems we have encountered.

    Finally, in the part of mass sensing, we choose Parylene as the material for deposition. The main reason is that it can be deposited at room temperature, and it is more convenient for the study. We also achieved the purpose of mass sensing by measuring the change of frequency by the change of mass.

    致謝 ...................................................I 摘要 ..................................................II Abstract.................................................III 目錄 ..................................................IV 圖目錄 ..................................................VI 表目錄 ...................................................X 第1章 序論 ...........................................1 1-1 研究動機 ...........................................1 1-2 鎖相迴路(Phase-Locked Loop)技術 ...................2 1-3 互補式金氧半導體微機電系統(CMOS-MEMS) ...........3 1-4 論文架構 ...........................................4 1-5 文獻回顧與比較 ...................................5 第2章 鎖相迴路基本理論 ..................................10 2-1 鎖相迴路工作原理 ..................................10 2-2 鎖相迴路電路分類 ..................................10 2-3 鎖相迴路基本電路架構 ..........................11 2-3-1 相位偵測器 ..................................11 2-3-2 迴路濾波器 ..................................12 2-3-3 壓控震盪器 ..................................12 2-4 鎖定狀態下的轉移函數 ..........................13 2-4-1 迴路模型 ..........................................13 2-4-2 轉移函數 ..........................................14 2-4-3 階次和類型 ..................................14 2-4-4 迴路頻寬設定 ..................................15 2-4-5 暫態響應 ..........................................16 2-5 直流偏移 ..........................................18 2-6 相位雜訊 ..........................................18 2-6-1 迴路中各模型的雜訊分析 ..........................18 2-6-2 震盪器雜訊分析 ..................................20 第3章 鎖相迴路電路模擬及量測 ..........................24 3-1 相位偵測器設計與實現 ..........................24 3-2 壓控震盪器設計與實現 ..........................27 3-3 主動式低通濾波器設計與實現 ..........................34 3-4 迴路模擬 ..........................................37 3-5 晶片佈局與量測環境 ..................................38 3-6 鎖相迴路量測 ..................................42 第4章 MEMS震盪器設計與量測 ..........................45 4-1 MEMS共振器原理 ..................................45 4-2 MEMS共振器設計製作與參數規格 ..................47 4-3 MEMS震盪器量測 ..................................55 第5章 使用鎖相迴路驅動的MEMS震盪器 ..................63 5-1 數位訊號控制電路 ..................................63 5-2 電路架構 ..........................................64 5-3 量測結果 ..........................................65 5-4 質量感測量測結果 ..................................67 第6章 結論 ..........................................72 6-1 結果與討論 ..................................72 6-2 未來規劃 ..........................................72 參考文獻 ..................................................73

    [1] R. E. Best, “Phase-Locked Loops: Design, Simulation, and Applications (5th Edition),” McGraw-Hill, New York, 2003.

    [2] J. M. Bustillo, et al., "Surface micromachining for microelectromechanical systems," Proc. IEEE, vol. 86, pp. 1552-1574, Aug. 1998.

    [3] S.-H. Tseng, et al., "High-Q CMOS MEMS resonator oscillator fabricated in a MPW batch process," EUROSENSORS XXIV, Linz, Austria, pp. 5-8, Sep. 2010.

    [4] William P. King King, Thomas W. Kenny, Member, IEEE, Kenneth E. Goodson, Associate Member, IEEE, Graham L. W. Cross, Michel Despont, Urs T. Dürig, Hugo Rothuizen, Gerd Binnig, and Peter Vettiger, Fellow, IEEE, “Design of Atomic Force Microscope Cantilevers for Combined Thermomechanical Writing and Thermal Reading in Array Operation,” JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 11, NO. 6, pp. 765-774, DECEMBER 2002

    [5] Voiculescu I, Zaghloul M E, McGill R A, Houser E J and Fedder G K 2005, “Electrostatically actuated resonant microcantilever beam in CMOS technology for the detection of chemical weapons,” IEEE Sensors J. pp. 641-547

    [6] Verd J et al 2005, “Design, fabrication, and characterization of a submicroelectromechanical resonator with monolithically integrated CMOS readout circuit,” IEEE J. Microelectromech. Syst. pp. 508-519

    [7] S.M. Firdaus1 I.A. Azid1 O. Sidek2 K. Ibrahim3 M. Hussien3, "Enhancing the sensitivity of a mass-based piezoresistive micro-electro-mechanical systems cantilever sensor,” Micro & Nano Letters, 2010, Vol. 5, Iss. 2, pp. 85–90

    [8] C. T.-C. Nguyen, "MEMS technology for timing and frequency control," IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control, vol.54, no. 2, pp. 251-270, Feb. 2007.

    [9] Alberto Cagliani and Zachary J. Davis, “ Bulk Disk Resonator Based Ultrasensitive Mass Sensor,” IEEE SENSORS 2009 Conference, pp. 1317-1320

    [10] Margarita Narducci, Eduard Figueras, Maria José Lopez, Isabel Gràcia, Luis Fonseca, Joaquin Santander, Carles Cané, “A High Sensitivity Silicon Microcantilever Based Mass Sensor,” IEEE SENSORS 2008 Conference, pp. 1127-1130

    [11] Thomas P. Burg, Member, IEEE, Amir R. Mirza, Nebojsa Milovic, Christine H. Tsau, George A. Popescu, John S. Foster, and Scott R. Manalis, “Vacuum-Packaged Suspended Microchannel Resonant Mass Sensor for Biomolecular Detection,” JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 15, NO. 6, pp. 1466-1476, DECEMBER 2006

    [12] C. Wang, et al., "Implementation of phase-locked loop control for MEMS scanning mirror using DSP," Sensors and Actuators, A:Physical, vol. 133, pp. 243-249, 2007.

    [13] X. Sun, et al., "Stability and resolution analysis of a phase-locked loop nature frequency tracking system for MEMS fatigue testing," Journal of Dynamic System, Measurement, and Contral, vol. 124, no. 4, pp. 599-605, 2002.

    [14] G. L. Baldwin and W. G. Howard, "A Wideband Phaselocked Loop Using Harmonic Cancellation, " Proc. IEEE, vol.57, pp. 1464, Aug. 1969.

    [15] R. E. Scott and C. A. Halijak, "The SCEM-Phase-Lock Loop and Ideal FM Discrimination," IEEE Trans. Commun. COM-25, pp. 390–392, Mar. 1977.

    [16] B. C. Kuo, “Automatic Control Systems (8th Edition),” Prentic Hall, 2003.

    [17] F. M. Gardner, “Phaselock Techniques (4th Edition),“ John Wiley, New York, pp. 811, 2005.

    [18] B. Gilbert, "A Precise Four-Quadrant Multiplier with Subnanosecond Response," IEEE J. Solid-State Circuits SC-3, pp. 365–373, Dec. 1968.

    [19] P.R. Gray and R.G. Meyer, "Analysis and design of analog integrated circuits, (4th Edition)." John Wiley, New York, pp. 130, 2001.

    [20] Maher E. Rizkalla and Harry C. Gundrum, “Design of Analog CMOS Integrated Circuits Input Stage for the Operation at Zero Temperature Coefficient Using PSPICE,” Boston, MA: McGraw-Hill, New York, pp. 16-19 2001.

    [21] M. Mansour, and A. Mehrotra, "Analysis of MOS cross-coupled LC-tank oscillators using short-channel device equations," Proceedings of the Asia and South Pacific on Design Automation Conference, pp. 181-185 , 2004.

    [22] A. Hajimiri, and T. H. Lee, "Phase noise in CMOS differential LC oscillators," Proc. VLSI Circuit, vol. 11-13, pp. 48-51, June 1998.

    [23] A. Hajimiri, and T. H. Lee, “The Design of Low Noise Oscillators,” Kluwer Academic Publishers, 2000.

    [24] A. Grebennikov, “Rf and Microwave Transistor Oscillator Design,” John Wiley, New York, 2007.

    [25] "http://www.murata.com/products/catalog/pdf/o05e.pdf"

    [26] "http://www.wima.de/EN/WIMA_FKP_2.pdf"

    [27] "http://www.toshiba.com/taec/components2/Datasheet_Sync//273/1377.pdf"

    [28] C. T.-C. Nguyen and R. T. Howe, "An Integrated CMOS Micromechanical Resonator High-Q Oscillator," IEEE J. Solid-State Circuits, vol. 34, no. 4, pp. 440-455, april 1999.

    [29] C. T.-C. Nguyen and R. T. Howe, "CMOS micromechanical resonator oscillator," IEEE IEDM Tech. Digest , pp. 199-202, Dec. 1993.

    [30] Y.-W. Lin, et al., "Series-Resonant VHF micromechanical resonator reference oscillator," IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2477-2491, Dec. 2004.

    [31] S. Pourkamali, et al., "Low-Impedance VHF and UHF capacitive silicon bulk acoustic wave resonators," IEEE Trans. Electron Devices, vol. 54, no. 8, pp. 2024-2030, Aug. 2007.

    [32] D. B. Leeson, "A Simple Model Of Feedback Oscillator Noise Spectrum," Proc. IEEE., Vol. 54, pp. 329-330, feb. 1966.

    [33] J. Tamayo, et al., "Chemical sensors and biosensors in liquid environment based on microcantilevers with amplified quality factor," Ultramicroscopy 86, pp. 167-173, 2001.

    [34] J. Tamayo, et al., "High-Q Dynamic Force Microscopy in Liquid and Its Application to Living Cells," Biophysical Journal, vol. 81, pp. 526-537, July 2001.

    [35] "http://www.national.com/ds/LM/LME49990.pdf"

    [36] "http://focus.ti.com/lit/ds/symlink/opa134.pdf"

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE