研究生: |
莊維裕 Chuang, Wei-Yu |
---|---|
論文名稱: |
廢聚乳酸塑膠的解聚作為循環經濟可行性示例 Depolymerization of Waste PLA Plastic as Feasibility Demonstration of Circular Economy |
指導教授: |
凌永健
Ling, Yong-Chien |
口試委員: |
饒達仁
Yao, Da-Jeng 杜敬民 Du, Jing-Min 張家耀 Chang, Jia-Yaw |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 聚乳酸塑膠 、解聚 、水解 、水凝膠 、循環經濟 |
外文關鍵詞: | Polylactic acid plastic, Depolymerization, Hydrolysis, Hydrogel, Circular economy |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
聚乳酸是一種用途廣泛、生物可降解的脂肪族聚酯。雖然被稱作生物可降解塑膠,但其透過生物進行堆肥降解的條件過於嚴苛,且目前大多透過焚燒進行處理;因此本研究以循環經濟的思維,將廢聚乳酸塑膠進行水解並回收乳酸,而後製成具有能提高海水蒸散效率的高價值水凝膠。
本研究的第一部分,透過低成本的氫氧化鈉作為催化劑,將廢聚乳酸塑膠水解。同時使用田口實驗設計法,優化反應時間、反應溫度、氫氧化鈉濃度及氫氧化鈉溶液/聚乳酸塑膠體積重量比等反應條件,優化後的聚乳酸塑膠降解率可達98.4%。第二部分則利用液-液萃取回收乳酸,再將其與殼聚醣合成為殼聚醣-寡聚乳酸,接著透過活性碳的摻雜與戊二醛交聯形成殼聚醣-寡聚乳酸-活性碳水凝膠。
第三部分則利用合成的殼聚醣-寡聚乳酸-活性碳水凝膠進行海水淡化,其蒸散效率為一般海水的1.6倍,分析收集得到的淡水導電度及鈉、鉀、鈣、鎂……等離子濃度,皆小於海水及自來水,因此可作為民生用水。
Polylactic acid (PLA) plastics are widely used, biodegradable aliphatic polyester. Although they are called biodegradable plastics, the condition for composting are too harsh, and most of them are treated by incineration currently. Therefore, in this study, hydrolyzing the PLA plastics waste and recycling the lactic acid followed by synthesizing the high value hydrogel which can improve water evaporation rate are guided by circular economy.
First, PLA plastics waste are hydrolyzed by low-cost sodium hydroxide as catalyst. Taguchi method is used to optimize the reaction time, temperature, concentration of sodium hydroxide, and sodium hydroxide solution volume/PLA weight ratio. The degradation rate can reach 98.4% by optimized condition. Second, lactic acid is recycled by liquid-liquid extraction, and it’s used to synthesize the chitosan-lactic acid oligomer (CS-LAO) with chitosan, followed by mixing with active charcoal and crosslinking with glutaraldehyde to form the chitosan-lactic acid oligomer-active charcoal (CS-LAO-AC).
Third, the as-prepared CS-LAO-AC is used to desalinate seawater. The evaporation rate of seawater treated with CS-LAO-AC is 1.6 times compared to general sea water. The conductivity and concentration of Na+, K+, Ca2+, Mg2+ of the desalinated sea water is lower than those of general seawater and tap water. The desalinated water can therefore be used in household.
1. Pawar, H. R.; Shailendra, L. M., Waste plastic Pyrolysis oil Alternative Fuel for CI Engine – A Review. Res. J. Engineering Sci. 2013, 2 (2), 26-30.
2. Ammala, A.; Bateman, S.; Dean, K.; Petinakis, E.; Sangwan, P.; Wong, S.; Yuan, Q.; Yu, L.; Patrick, C.; Leong, K. H., An overview of degradable and biodegradable polyolefins. Progress in Polymer Science 2011, 36 (8), 1015-1049.
3. European-bioplastics; nova-Institute Bioplastics market data. https://www.european-bioplastics.org/market/ (accessed SEP 30).
4. Boulding, K. E., The Economics of the Coming Spaceship Earth. New York, 1966.
5. Pearce, D. W.; Turner, R. K., Economics of natural resources and the environment. JHU Press, 1989.
6. Tokiwa, Y.; Calabia, B. P., Biodegradability and biodegradation of poly(lactide). Appl Microbiol Biotechnol 2006, 72, 244-251.
7. Tsuji, H.; Ikada, Y., Blends of Aliphatic Polyesters. II. Hydrolysis of Solution-Cast Blends from Poly(L-lactide) and Poly(1-caprolactone) in Phosphate-Buffered Solution. J. Appl. Polym. Sci. 1998, 67, 405-415.
8. Ray E. Drumright; Gruber, P. R.; Henton, D. E., Polylactic Acid Technology. Adv. Mater. 2000, 12 (23), 1841-1846.
9. Hamad, K.; Kaseem, M.; Yang, H. W.; Deri, F.; Ko, Y. G., Properties and medical applications of polylactic acid: A review. express polym. lett. 2015, 9, 435-445.
10. Lim, L.-T.; Auras, R.; Rubino, M., Processing technologies for poly(lactic acid). Prog. Polym. Sci. 2008, 33, 820-852.
11. Auras, R.; Lim, L. T.; Selke, S. E. M.; Tsuji, H., Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications. John Wiley & Son: 2011.
12. Starr, J. N.; Westhoff, G., Lactic Acid. Wiley: 2014.
13. Souza, R. O. M. A. d.; Miranda, L. S. M.; Luque, R., Bio(chemo)technological strategies for biomass conversion into bioethanol and key carboxylic acids. Green Chemistry 2014, 16, 2386-2405.
14. Shetye, S. P.; Godbole, A.; Bhilegaokar, S.; Gajare, P., Hydrogels: Introduction, Preparation, Characterization and Applications. Ijrm.Human 2015, 1 (1), 47-71.
15. Caló, E.; Khutoryanskiy, V. V., Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 2015, 65, 252-267.
16. Transforming our world the 2030 Agenda for Sustainable Development. UN General Assembly: 2015.
17. Prieto-Sandoval, V.; Jaca, C.; Ormazabal, M., Towards a consensus on the circular economy. J. Clean. Prod. 2018, 179, 605-615.
18. 張淵斯; 曹知行, 海水淡化的發展. 科學發展 2009, 438, 32-39.
19. Salazar-Sánchez, M. d. R.; Campo-Erazo, S. D.; Villada-Castillo, H. S.; Solanilla-Duque, J. F., Structural changes of cassava starch and polylactic acid films submitted to biodegradation process. Int. J. Biol. Macromol. 2019, 129, 442-447.
20. Itaavaara, M.; Karjomaa, S.; Selin, J.-F., Biodegradation of polylactide in aerobic and anaerobic thermophilic conditions. Chemosphere 2002, 46, 879-885.
21. Robson, G. D.; Karamanlioglu, M., The influence of biotic and abiotic factors on the rate of degradation of poly(lactic) acid (PLA) coupons buried in compost and soil. Polym. Degrad. Stabil 2013, 98, 2063-2071.
22. Blackburn, R., Biodegradable and Sustainable Fibres. Woodhead Publishing: 2005.
23. Funabashi, M.; Ninomiya, F.; Kunioka, M., Biodegradation of Polycaprolactone Powders Proposed as Reference Test Materials for International Standard of Biodegradation Evaluation Method. J. Polym. Environ. 2007, 15, 7-17.
24. Zhao, P.; Rao, C.; Gu, F.; Sharmin, N.; Fu, J., Close-looped recycling of polylactic acid used in 3D printing: An experimental investigation and life cycle assessment. J. Clean. Prod. 2018, 197, 1046-1055.
25. Beltrán, F. R.; Barrio, I.; Lorenzo, V.; Río, B. d.; Urreaga, J. M.; Orden, M. U. d. l., Valorization of poly(lactic acid) wastes via mechanical recycling: Improvement of the properties of the recycled polymer. Waste Manag. Res. 2019, 37 (2), 135-141.
26. Beltr, F. R.; Infante, C.; Orden, M. U. d. l.; Urreaga, J. M., Mechanical recycling of poly(lactic acid): Evaluation of a chain extender and a peroxide as additives for upgrading the recycled plastic. 2019, 219, 46-56.
27. Andrade, M. F. C. d.; Fonseca, G.; Morales, A. R.; Mei, L. H. I., Mechanical recycling simulation of polylactide using a chain extender. Adv. Polym. Tech. 2018, 37 (6), 2053-2060.
28. Aznar, M. a. P.; Caballero, M. A.; Sancho, J. s. A.; France´s, E., Plastic waste elimination by co-gasification with coal and biomass influidized bed with air in pilot plant. Fuel Process. Technol. 2006, 87, 409-420.
29. Andrade, M. F. C. d.; Souza, P. c. M. S.; Cavalett, O. v.; Morales, A. R., Life Cycle Assessment of Poly(Lactic Acid) (PLA): Comparison Between Chemical Recycling, Mechanical Recycling and Composting. J. Polym. Environ. 2016, 24 (4), 372-384.
30. Ladewig, B. P.; Slater, B.; Wong, S.-O.; Duckworth, A.; White, A. J. P.; Hill, M. R., Upcycling a plastic cup: one-pot synthesis of lactate containing metal organic frameworks from polylactic acid. Chem. Commun. 2019, 55, 7319-7322.
31. Cantat, T.; Monsigny, L.; Berthet, J.-C., Depolymerization of Waste Plastics to Monomers and Chemicals Using a Hydrosilylation Strategy Facilitated by Brookhart’s Iridium(III) Catalyst. ACS Sustainable Chem. Eng. 2018, 6, 10481-10488.
32. Dai, L.; Liu, R.; Si, C., A novel functional lignin-based filler for pyrolysis and feedstock recycling of poly(l-lactide). Green Chem. 2018, 20 (8), 1777-1783.
33. Tsuji, H.; Kondoh, F., Synthesis of meso-lactide by thermal configurational inversion and depolymerization of poly( l -lactide) and thermal configurational inversion of lactides. Polym. Degrad. Stabil. 2017, 141, 77-83.
34. Kopinke, F.-D.; M. Remmler; Mackenzie, K.; Milder, M.; Wachsen, Thermal decomposition of biodegradable polyesters -11. Poly(lactic acid). Poly. Degrad. Stabil. 1996, 53, 329-342.
35. Jiang, B.; Tantai, X.; Zhang, L.; Hao, L.; Sun, Y.; Deng, L.; Shi, Z., Synthesis of chlorostannate(ii) ionic liquids and their novel application in the preparation of high-quality l-lactide. RSC Advances 2015, 5 (63), 50747-50755.
36. Collinson, S. R.; Sánchez, A. C., The selective recycling of mixed plastic waste of polylactic acid and polyethylene terephthalate by control of process conditions. Eur. Polym. J. 2011, 47, 1970-1976.
37. Petrus, R.; Bykowski, D.; Sobota, P., Solvothermal Alcoholysis Routes for Recycling Polylactide Waste as Lactic Acid Esters. ACS Catal. 2016, 6 (8), 5222-5235.
38. Román-Ramírez, L. A.; McKeown, P.; Jones, M. D.; Wood, J., Poly(lactic acid) Degradation into Methyl Lactate Catalyzed by a Well-Defined Zn(II) Complex. ACS Catal. 2018, 9 (1), 409-416.
39. Enthaler, S.; Alberti, C.; Damps, N.; Meißner, R. R. R., Depolymerization of End-of-Life Poly(lactide) via 4-Dimethylaminopyridine-Catalyzed Methanolysis. ChemistrySelect 2019, 4, 6845-6848.
40. Liu, M.; Guo, J.; Gu, Y.; Gao, J.; Liu, F., Versatile Imidazole-Anion-Derived Ionic Liquids with Unparalleled Activity for Alcoholysis of Polyester Wastes under Mild and Green Conditions. ACS Sustainable Chem. Eng. 2018, 6 (11), 15127-15134.
41. Leibfarth, F. A.; Moreno, N.; Hawker, A. P.; Shand, J. D., Transforming polylactide into value-added materials. J Poly. Sci. Pol. Chem. 2012, 50 (23), 4814-4822.
42. Faisal, M.; Saeki, T.; Tsuji, H.; Daimon, H.; Fujie, K., Recycling of poly lactic acid into lactic acid with high temperature and high pressure water. In Waste Management and the Environment III, 2006; pp 225-233.
43. Piemonte, V.; Sabatini, S.; Gironi, F., Chemical Recycling of PLA: A Great Opportunity Towards the Sustainable Development? Journal of Polymers and the Environment 2013, 21 (3), 640-647.
44. Piemonte, V.; Gironi, F., Lactic Acid Production by Hydrolysis of Poly(Lactic Acid) in Aqueous Solutions: An Experimental and Kinetic Study. Journal of Polymers and the Environment 2012, 21 (1), 275-279.
45. Li, X.-Y.; Zhou, Q.; Yang, K.-K.; Wang, Y.-Z., Degradation of polylactide using basic ionic liquid imidazolium acetates. Chemical Papers 2014, 68 (10).
46. Funazukuri, T.; Yagihashi, M., Recovery of L-Lactic Acid from Poly(L-lactic acid) under Hydrothermal Conditions of Dilute Aqueous Sodium Hydroxide Solution. Ind. Eng. Chem. Res. 2010, 49, 1247-1251.
47. Robin, A.; Rosa, J. L.; Silva, M. B.; Baldan, C. A.; Peres, M. P., Electrodeposition of copper on titanium wires: Taguchi experimental design approach. J. Mater. Process. Technol. 2009, 209, 1181-1188.
48. Erfani, A.; Muhammadi, M.; Neshat, S. A.; Shalchi, M. M.; Varaminian, F., Investigation of Aluminum Primary Batteries Based on Taguchi Method. Energy Technology & Policy 2015, 2, 19-27.
49. Kacker, R. N.; Lagergren, E. S.; Filliben, J. J., TaguchVs Orthogonal Arrays Are Classical Designs of Experiments. J. Res. Natl. Inst. Stand. Technol. 1991, 96, 577-591.
50. Fernández-López, J. A.; Angosto, J. M.; Roca, M. J.; Miñarro, M. D., Taguchi design-based enhancement of heavy metals bioremoval by agroindustrial waste biomass from artichoke. Sci. Total Environ. 2019, 653, 55-63.
51. Nemours, E. d. P. d., Methacrylate Resins. ind. eng. chem. 1936, 28 (10), 1160-1163.
52. Wichterle, O.; Lim, D., Hydrophilic gels for biological use. Nature 1960, 185, 117-118.
53. Maitra, J.; Shukla, V. K., Cross-linking in Hydrogels - A Review. J. Polym. Sci. 2014, 4 (2), 25-31.
54. Parhi, R., Cross-Linked Hydrogel for Pharmaceutical Applications: A Review. Adv. Pharm. Bull. 2017, 7 (4), 515-530.
55. Podkoscielna, B.; Bartnicki, A.; Gawdzik, B., New crosslinked hydrogels derivatives of 2-hydroxyethyl methacrylate: Synthesis, modifications and properties. Express. Polymer. Letters. 2012, 6 (9), 759-771.
56. Zheng, S. Y.; Tian, Y.; Zhang, X. N.; Du, M.; Song, Y.; Wu, Z. L.; Zheng, Q., Spin-coating-assisted fabrication of ultrathin physical hydrogel films with high toughness and fast response. Soft Matter 2018, 14 (28), 5888-5897.
57. Ricciardi, R.; Gaillet, C.; Ducouret, G.; Lafuma, F.; Lauprêtre, F., Investigation of the relationships between the chain organization and rheological properties of atactic poly(vinyl alcohol) hydrogels. Polymer 2003, 44 (11), 3375-3380.
58. Kamoun, E. A.; Kenawy, E. S.; Chen, X., A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J. Adv. Res. 2017, 8 (3), 217-233.
59. Ullah, F.; Othman, M. B.; Javed, F.; Ahmad, Z.; Md Akil, H., Classification, processing and application of hydrogels: A review. Mater. Sci. Eng. C. Mater. Biol. Appl. 2015, 57, 414-33.
60. Bahram, M.; Mohseni, N.; Moghtader, M., An Introduction to Hydrogels and Some Recent Applications. In Emerging Concepts in Analysis and Applications of Hydrogels, 2016.
61. Richter, A.; Paschew, G.; Klatt, S.; Lienig, J.; Arndt, K. F.; Adler, H. P., Review on Hydrogel-based pH Sensors and Microsensors. Sensors 2008, 8 (1), 561-581.
62. Bajpai, A. K.; Shukla, S. K.; Bhanu, S.; Kankane, S., Responsive polymers in controlled drug delivery. Prog. Polym. Sci. 2008, 33 (11), 1088-1118.
63. Park, K.; Qiu, Y., Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 2001, 53, 321-339.
64. Hoare, T. R.; Kohane, D. S., Hydrogels in drug delivery: Progress and challenges. Polymer 2008, 49 (8), 1993-2007.
65. Murdan, S., Electro-responsive drug delivery from hydrogels. J. Controlled Release 2003, 92 (1-2), 1-17.
66. Jiang, H.; Fan, L.; Yan, S.; Li, F.; Li, H.; Tang, J., Tough and electro-responsive hydrogel actuators with bidirectional bending behavior. Nanoscale 2019, 11 (5), 2231-2237.
67. Luo, H.; Wu, K.; Wang, Q.; Zhang, T. C.; Lu, H.; Rong, H.; Fang, Q., Forward osmosis with electro-responsive P(AMPS-co-AM) hydrogels as draw agents for desalination. J. Membrane. Sci. 2020, 593.
68. Li, L.; Scheiger, J. M.; Levkin, P. A., Design and Applications of Photoresponsive Hydrogels. Adv. Mater. 2019, 31 (26), e1807333.
69. Hao, Y.; Meng, J.; Wang, S., Photo-responsive polymer materials for biological applications. Chin. Chem. Lett. 2017, 28 (11), 2085-2091.
70. Patnaik, S.; Sharma, A. K.; Garg, B. S.; Gandhi, R. P.; Gupta, K. C., Photoregulation of drug release in azo-dextran nanogels. Int. J. Pharm. 2007, 342 (1-2), 184-93.
71. Liu, M.; Zeng, X.; Ma, C.; Yi, H.; Ali, Z.; Mou, X.; Li, S.; Deng, Y.; He, N., Injectable hydrogels for cartilage and bone tissue engineering. Bone. Res. 2017, 5, 17014.
72. Tekay, E.; Aydınoğlu, D.; Şen, S., Effective Adsorption of Cr(VI) by High Strength Chitosan/Montmorillonite Composite Hydrogels Involving Spirulina Biomass/Microalgae. J. Polym. Environ. 2019, 27 (8), 1828-1842.
73. Ma, J.; Li, T.; Liu, Y.; Cai, T.; Wei, Y.; Dong, W.; Chen, H., Rice husk derived double network hydrogel as efficient adsorbent for Pb(II), Cu(II) and Cd(II) removal in individual and multicomponent systems. Bioresour. Technol. 2019, 290, 121793.
74. Lin, Y.; Fang, G.; Deng, Y.; Shen, K.; Huang, C.; Wu, T., A pH-sensitive Xylan-based Superabsorbent Hydrogel for the Removal of Methylene Blue from Water. BioResources 2019, 14 (3), 5573-5585.
75. Gupta, V. K.; Tyagi, I.; Agarwal, S.; Sadegh, H.; Shahryari-ghoshekandi, R.; Yari, M.; Yousefi-nejat, O., Experimental study of surfaces of hydrogel polymers HEMA, HEMA–EEMA–MA, and PVA as adsorbent for removal of azo dyes from liquid phase. J. Mol. Liq. 2015, 206, 129-136.
76. Sirousazar, M.; Ghanizadeh, E.; Rezazadeh, B.; Abbasi-Chianeh, V.; Kheiri, F., Polymeric Hydrogel Pipes for Irrigation Application. J. Polym. Environ. 2019, 27 (12), 2842-2852.
77. Zhao, F.; Zhou, X.; Shi, Y.; Qian, X.; Alexander, M.; Zhao, X.; Mendez, S.; Yang, R.; Qu, L.; Yu, G., Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 2018, 13 (6), 489-495.
78. Wu, S.; Lv, G.; Lou, R., Applications of Chromatography Hyphenated Techniques in the Field of Lignin Pyrolysis. In Applications of Gas Chromatography, 2012.
79. Skoog, D. A.; Holler, F. J.; Crouch, S. R., Principles of Instrumental Analysis, 6th edition. Cenage Learning: 2014.
80. Song, R.; Liu, F.; Yang, J.; Yao, L.; He, L.; Qin, B., Novel pH-Sensitive Lactic Acid Oligomer Grafted Chitosan Hydrogel for Controlled Drug Release. J. Macromol. Sci., Part B: Physics. 2011, 50 (7), 1260-1269.
81. Xiao, Z.; Xie, Y.; Militz, H.; Mai, C., Effect of glutaraldehyde on water related properties of solid wood. Holzforschung 2010, 64 (4).
82. Zhao, F.; Zhou, X.; Yu, G.; Guo, Y.; Rosenberger, B., Architecting highly hydratable polymer networks to tune the water state for solar water purification. Sci. Adv. 2019, 5, eaaw5484.