研究生: |
劉硯鈞 |
---|---|
論文名稱: |
基因演算法在固態氧化物燃料電池/微渦輪混成系統控制參數最佳化設計 Genetic Algorithm on the Optimal Tuning of Control Parameters of Turbo SOFC Systems |
指導教授: | 洪哲文 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 53 |
中文關鍵詞: | 基因演算法 、燃料電池 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的目的為研究數種不同操作方式對固態氧化物燃料電池混成發電系統啟動時間性能的影響,並利用遺傳演算法(Genetic Algorithm)對此一多輸入單輸出之混成發電系統進行控制參數最佳化設計,以縮短混成發電系統到達工作狀態的時間。
對於所欲控制目標之混成發電系統,先以熱流及電化學基礎理論建立固態氧化物電池數學模式,並加入熱交換器、氣渦輪機發電系統及燃燒室等元件,最後將所得到的數學模式以Matlab/Simulink建構模擬平台。在研究啟動控制對混成發電系統啟動時間之影響時,是以模糊邏輯控制器(Fuzzy Logic Controller)代表非線性閥門進行對燃料及空氣的流量分配,並以遺傳演算法針對影響系統性能的幾項參數,經過演化後得到此多輸入單輸出非線性閥門之最佳化歸屬函數、邏輯條件庫及最佳參數解,並透過線上模擬(On-line Simulation)尋找最佳的尺規因素(Scaling Factor)以及模糊推論系統(Fuzzy Inference System,FIS)。另外以外加之高溫儲氣槽直接對燃料電池直接進行加熱,藉以研究在無限量以及有限量供應高溫氣體的情形下的啟動情形。研究結果顯示以模糊邏輯控制器配合遺傳演算法以及其他數種控制器進行控制後,混成發電系統的啟動時間縮短了約400秒。而以經由前述控制器加上高溫儲氣槽後,可將混成發電系統啟動時間再縮短約550秒。
[1] Chan, S.H., Ho, H.K., Tian, Y., “Modeling of Simple Hybrid solid Oxide Fuel Cell and Gas Turbine Power Plant,” Journal of Power Sources, vol.109, pp111-120, 2002.
[2] Chan, S.H., Ho, H.K., Tian, Y., “Modeling for Part-Load Operation of Solid Oxide Fuel Cell Gas Turbine Hybrid Power Plant,” Journal of Power Sources, vol.114, pp213-227, 2003.
[3] 宋朝凱, “固態氧化物燃料電池混成發電系統動態模擬與設計, ”清華大學動力機械研究所論文, 2004.
[4] Mollar, B.F., Arriagada, J., Assadi, M., Potts, I., “Optimisation of An SOFC/GT System With CO2-Capture,” Journal of Power Sources, vol.131, pp320-326 ,2004.
[5] Jens, P., Azra, S., Lars S., “Combined Solid Oxide Fuel Cell And Gas Turbine Systemfor Efficient Power and Heat Generation,” Journal of Power Sources, vol.124, pp65-75, 2003.
[6] Holland, J.H., “Adaptation in Natural and Artificial Systems,” Ann Arbor, MI:The University of Michigan Press, 1975.
[7] Goldberg, D.E., Genetic Algorithms in Search, Optimization & MachineLearning, Addison-Wesley Publishing Co, USA, 1989.
[8] Li, R., Zhang, Y., “Fuzzy Logic Controller Based on Genetic Algorithm,” Fuzzy Sets and Systems, vol.83, pp1-10, 1996.
[9] Chin, T.C., Qi, X.M., “Genetic Algorithms for Learning The Rule Base of Fuzzy Logic Controller,” Fuzzy Sets and Systems vol.97, pp1-7, 1998.
[10] Chin, T.C., Qi, X.M., “Genetic Algorithms Based Fuzzy Controller For High Order Systems,” Fuzzy Sets and Systems, vol.91, pp649-662, 1997.
[11] Lin, S.C., Chen, Y.Y., “A GA-Based Fuzzy Controller with Sliding Mode,” International Joint Conference of the Fourth IEEE International Conference on Fuzzy Systems and The Second International Fuzzy Engineering Symposium, IEEE Transactions, vol.3, pp20-24, 1995.
[12] Chakraborty, K., Bandyopadhyay,R.D., Patranabis, “A Fuzzy-Genetic Approach for Automatic Tuning of a PID Controller,” 23rd Int. Conf. Information Technology Interfaces ITI 2001, June 19-22, 2001.
[13] Layne, A., Holcombe, N., “Fuel Cell/Gas Turbine Hybrid Power Systems for Distributed Generation,” ASME International IGTI, Global Gas Turbine News, Vol.40, No.2, pp.4-7, 2000.
[14] Costamagna,P., Magistri, L., Massardo, A. F., “Design and Part-Load Performance of A Hybrid System Based on A Solid Oxide Fuel Cell Reactor And A Micro Gas Turbine,” Journal of Power Sources, Vol.96, pp352-368, 2001.
[15] Cunnel, C., Pangalis, M.G., Martinez-Botas, R. F., “Integration of Solid Oxide Fuel Cells into Gas Turbine Power Generation Cycles.Part2:Hybrid Model for Various Integration,” Proceedings of the Institution of Mechanical Engineers, PartA :Journal of Power and Energy vol.216, pp.129-144, 2002.
[16] 周鵬程, 基因演算法原理與應用-活用Matlab, 全華科技, 2001.
[17] Yi, Y., Rao, A.D., Brouwer, J., Samuesen, G.S., “Analsis and Optimization of a Solid Oxide Fuel Cell and Intercooled Gas Turbine(SOFC-ICGT)hybrid cycle,” Journal of Power Sources, vol.132, pp77-85, 2004.
[18] Hanselman, D., Littlefield, B., Mastering Matlab6, A Comprehensive Tutorial and Reference, Prentice Hall, 2001.
[19] Bossel, U.G., “Final Report on SOFC Data Facts and Figures,” Swiss Federal Office of Energy, Berne, CH. 1992.