研究生: |
福 安 Truong, Anh Vu |
---|---|
論文名稱: |
以CRISPR改質間質幹細胞用於顱骨再生治療 CRISPR-based programming of mesenchymal stem cell for calvarial bone regeneration |
指導教授: |
胡育誠
Hu, Yu-Chen |
口試委員: |
宋信文
Sung, Hsing-Wen 賴伯亮 Lai, Po-Liang 黃振煌 Huang, Jen-Huang 喻秋華 Yuh, Chiou-Hwa |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 83 |
中文關鍵詞: | CRISPRa 、CRISPRi 、表觀遺傳修飾 、基因調控 、細胞調控 、頭骨修復 、再生醫學 |
外文關鍵詞: | CRISPRa, CRISPRi, epigenetic modification, gene regulation, cell programming, calvarial bone, regenerative medicine |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於自癒能力差,頭蓋骨修復在臨床醫學上仍是一大難題。間葉幹細胞,包括脂肪間葉幹細胞 (ASC) 以及骨髓間葉幹細胞 (BMSC),已被廣泛運用於硬骨及軟骨修復。在實驗室先前的研究已證實,誘導細胞進行軟骨分化而非硬骨分化,可以將修復途徑由膜內成骨轉換至軟骨內成骨,進而促進頭骨修復。
CRISPRa及CRISPRi 為新穎的工具,其利用dCas9蛋白以及單股嚮導RNA進行基因調控。在此篇研究,我們發展了兩個可同時進行基因抑制及活化的系統。第一篇主題中,我們設計了單一桿狀病毒載體搭載CRIPRai系統,此系統包含dSpCas9蛋白用以結合DNA、MCP-p65-HSF用以基因活化、COM-KRAB用以抑制基因表現,以達到同時抑制及提升基因表現。此外,為了將轉錄活化/抑制蛋白,正確且有區別性地標靶至目標基因座,我們改造了嚮導RNA的結構,使其具有MS2 hairpin 或com hairpin區域,可與轉錄活化/抑制蛋白前端的MCP/COM區域進行結合。在第二主題中,我們利用來自不同菌種的dCas9系統,結合助於鬆散染色質以促進轉錄的p300core (dSpCasp-p300core)、以及結合使染色體結構聚集以抑制基因轉錄的DNMT3A (dSaCas9-DNMT3A),搭配單股嚮導RNA標靶目標基因座,同時達到基因抑制及活化,且兩者不互相干擾。
我們證實了,我們的設計可在不同細胞株中,可達到不同程度的基因表現提升(Soc5, Sox6, Sox9)以及基因表現抑制(C/ebpα and Pparγ)。此外,在2D培養下,我們透過Alcian Blue及Oil Red O染色實驗,證實改質後的ASC及BMSC可有效地進行軟骨分化,亦可在脂肪誘導培養基的培養下減少脂肪分化。將細胞植入明膠支架進行3D培養時,透過組織化學染色法以及分析GAG及collagen type 2表現量,我們可以發現軟骨分化有受到顯著的提升。最後,在大鼠模型中,透過micro CT照影技術及組織免疫染色分析,將含有改質間葉幹細胞的明膠支架植入大鼠的頭骨缺陷處,可達到良好的骨修復情形。
綜觀我們的實驗結果,我們證實了透過CRISPR技術改質的間葉幹細胞可提升軟骨分化的能力以及進一步有效促進頭骨修復。
Calvarial bone regeneration remains a hurdle in clinical settings due to poor spontaneous healing. Mesenchymal stem cell (MSC), namely adipose-derived stem cell (ASC) and bone marrow stem cell (BMSC), has been widely utilized for bone/cartilage regeneration. Our previous studies showed that stimulating chondrogenic instead of osteogenic differentiation may switch the repair pathway from the native intramembranous to endochondral ossification pathway and boost calvarial bone healing.
CRISPR activation (CRISPRa) and CRISPR inhibition (CRISPRi) are newly developed technology that exploits dCas9 protein and single guide RNA (sgRNA) for programmable gene manipulation. In this study, we developed two systems facilitating simultaneous gene activation and repression. First of all, we designed a single baculovirus (Bac-CRISPRai) harboring the DNA-binding effector (SpdCas9), activation effector (MCP-p65-HSF), and repression effector (COM-KRAB) modules for simultaneous gene activation and repression. In addition, to differentially guide appropriate module (activator and/or repressor) to the locus of interest, either or each set of sgRNA, whose structure was engineered to carry MS2 hairpin (sgRNAa) or com hairpin (sgRNAi) structure that can specifically bind to MCP or COM on the activator or repressor, respectively, was incorporated upstream of the effectors. Secondly, we utilized two dCas9 orthologs fusing with ether chromatin relaxer p300core (dSpCas9-p300core) or condenser DNMT3A (dSaCas9-DNMT3A), enabling orthogonal recruitment of the effectors to the locus of interest.
We showed that transduction of mesenchymal stem cells with our designs conferred modest to significant gene upregulation (Sox5, Sox6, and Sox9) and downregulation (C/ebpa and Pparg), depending on the targeted genes and cells. Furthermore, we revealed that the engineered ASC or BMSC was able not only to robustly undergo chondrogenesis under normal culture condition but also defer from adipogenesis under adipogenic induction condition at 2D culture format via Alcian Blue and Oil Red O staining. Furthermore, we demonstrated that seeding the transduced cells onto gelatin scaffold significantly enhanced the expression of chondrogenic phenotype evidenced by histological analysis as well as GAG and collagen type 2 content quantification. Finally, implantation of the engineered cell/gelatin constructs into critical-size calvarial defect created on SD rats effectively promoted fracture healing as judged by micro CT imaging and immunohistological analysis. These data altogether affirmed that CRISPR-based programmed MSC is feasible and able to improve chondrogenic differentiation and subsequently augment calvarial bone healing.
1. K. S. Saladin, Anatomy & Physiology: The Unity of Form and Function. (McGraw-Hill, New York, NY, ed. 6th, 2012).
2. L. Claes, S. Recknagel, A. Ignatius, Fracture healing under healthy and inflammatory conditions. Nature Reviews Rheumatology 8, 133 (2012).
3. K. Schmidt-Bleek et al., Inflammatory phase of bone healing initiates the regenerative healing cascade. Cell and Tissue Research 347, 567-573 (2012).
4. P. Kolar et al., The Early Fracture Hematoma and Its Potential Role in Fracture Healing. Tissue Engineering Part B: Reviews 16, 427-434 (2010).
5. D. Toben et al., Fracture healing is accelerated in the absence of the adaptive immune system. Bone 47, S105 (2010).
6. C. M. Champagne, J. Takebe, S. Offenbacher, L. F. Cooper, Macrophage cell lines produce osteoinductive signals that include bone morphogenetic protein-2. Bone 30, 26-31 (2002).
7. E. Canalis, L. McCarthy Thomas, M. Centrella, Effects of platelet-derived growth factor on bone formation in vitro. Journal of Cellular Physiology 140, 530-537 (1989).
8. A. M. Phillips, Overview of the fracture healing cascade. Injury 36, S5-S7 (2005).
9. J. Cottrell, J. P. O’Connor, Effect of Non-Steroidal Anti-Inflammatory Drugs on Bone Healing. Pharmaceuticals 3, 1668-1693 (2010).
10. C. Sfeir, L. Ho, B. A. Doll, K. Azari, J. O. Hollinger, in Bone Regeneration and Repair: Biology and Clinical Applications, J. R. Lieberman, G. E. Friedlaender, Eds. (Humana Press, Totowa, NJ, 2005), pp. 21-44.
11. H. Zhou, S. S. Lu, D. W. Dempster, in Osteoporosis in Men (Second Edition), E. S. Orwoll, J. P. Bilezikian, D. Vanderschueren, Eds. (Academic Press, San Diego, 2010), pp. 15-24.
12. J. C. Crockett, M. J. Rogers, F. P. Coxon, L. J. Hocking, M. H. Helfrich, Bone remodelling at a glance. Journal of Cell Science 124, 991 (2011).
13. E. Komatsu David, J. Warden Stuart, The control of fracture healing and its therapeutic targeting: Improving upon nature. Journal of Cellular Biochemistry 109, 302-311 (2009).
14. K. D. Fong et al., Mechanical Strain Affects Dura Mater Biological Processes: Implications for Immature Calvarial Healing. Plastic and Reconstructive Surgery 112, (2003).
15. F. Sailhan, Bone lengthening (distraction osteogenesis): a literature review. Osteoporosis International 22, 2011-2015 (2011).
16. C. Iacobellis, A. Berizzi, R. Aldegheri, Bone transport using the Ilizarov method: a review of complications in 100 consecutive cases. Strategies in Trauma and Limb Reconstruction 5, 17-22 (2010).
17. E. A. Wang et al., Recombinant human bone morphogenetic protein induces bone formation. Proceedings of the National Academy of Sciences of the United States of America 87, 2220-2224 (1990).
18. W. K. Hsu et al., Lentiviral-mediated BMP-2 gene transfer enhances healing of segmental femoral defects in rats. Bone 40, 931-938 (2007).
19. S.-J. Lee et al., Enhancement of bone regeneration by gene delivery of BMP2/Runx2 bicistronic vector into adipose-derived stromal cells. Biomaterials 31, 5652-5659 (2010).
20. B. Levi, T. Longaker Michael, Concise Review: Adipose-Derived Stromal Cells for Skeletal Regenerative Medicine. STEM CELLS 29, 576-582 (2011).
21. S. C. Lo et al., Enhanced critical-size calvarial bone healing by ASCs engineered with Cre/loxP-based hybrid baculovirus. Biomaterials 124, 1-11 (2017).
22. V. J. Wright et al., BMP4-Expressing Muscle-Derived Stem Cells Differentiate into Osteogenic Lineage and Improve Bone Healing in Immunocompetent Mice. Molecular Therapy 6, 169-178 (2002).
23. A. L. Bertone et al., Adenoviral-mediated transfer of human BMP-6 gene accelerates healing in a rabbit ulnar osteotomy model. Journal of Orthopaedic Research 22, 1261-1270 (2006).
24. D. Zou et al., Blood vessel formation in the tissue-engineered bone with the constitutively active form of HIF-1α mediated BMSCs. Biomaterials 33, 2097-2108 (2012).
25. Y. Li et al., The promotion of bone regeneration through positive regulation of angiogenic–osteogenic coupling using microRNA-26a. Biomaterials 34, 5048-5058 (2013).
26. Y.-H. Liao et al., Osteogenic differentiation of adipose-derived stem cells and calvarial defect repair using baculovirus-mediated co-expression of BMP-2 and miR-148b. Biomaterials 35, 4901-4910 (2014).
27. C.-H. Lu, Y.-H. Chang, S.-Y. Lin, K.-C. Li, Y.-C. Hu, Recent progresses in gene delivery-based bone tissue engineering. Biotechnology Advances 31, 1695-1706 (2013).
28. I. M. Verma, M. D. Weitzman, GENE THERAPY: Twenty-First Century Medicine. Annual Review of Biochemistry 74, 711-738 (2005).
29. H. W. Distler Jörg et al., Nucleofection: a new, highly efficient transfection method for primary human keratinocytes*. Experimental Dermatology 14, 315-320 (2005).
30. J. S. Park et al., Non-viral gene delivery of DNA polyplexed with nanoparticles transfected into human mesenchymal stem cells. Biomaterials 31, 124-132 (2010).
31. M. Federico, A. H. Katherine, Immune Responses to AAV in Clinical Trials. Current Gene Therapy 11, 321-330 (2011).
32. Y. C. Hu, Baculovirus as a highly efficient expression vector in insect and mammalian cells. Acta Pharmacol Sin 26, 405-416 (2005).
33. Y. C. Hu, Baculovirus vectors for gene therapy. Adv Virus Res 68, 287-320 (2006).
34. F. M. Boyce, N. L. Bucher, Baculovirus-mediated gene transfer into mammalian cells. Proceedings of the National Academy of Sciences 93, 2348 (1996).
35. R. S. Dwarakanath, C. L. Clark, A. K. McElroy, D. H. Spector, The Use of Recombinant Baculoviruses for Sustained Expression of Human Cytomegalovirus Immediate Early Proteins in Fibroblasts. Virology 284, 297-307 (2001).
36. J. P. Bilello, E. E. Cable, R. L. Myers, H. C. Isom, Role of paracellular junction complexes in baculovirus-mediated gene transfer to nondividing rat hepatocytes. Gene Therapy 10, 733 (2003).
37. T. A. Kost, J. P. Condreay, D. L. Jarvis, Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nature Biotechnology 23, 567 (2005).
38. C. Y. Chen et al., Biosafety assessment of human mesenchymal stem cells engineered by hybrid baculovirus vectors. Mol Pharm 8, 1505-1514 (2011).
39. C. Y. Lin et al., Augmented healing of critical-size calvarial defects by baculovirus-engineered MSCs that persistently express growth factors. Biomaterials 33, 3682-3692 (2012).
40. W. H. Lo, S. M. Hwang, C. K. Chuang, C. Y. Chen, Y. C. Hu, Development of a hybrid baculoviral vector for sustained transgene expression. Mol Ther 17, 658-666 (2009).
41. L.-Y. Sung et al., Efficient gene delivery into cell lines and stem cells using baculovirus. Nat. Protocols 9, 1882-1899 (2014).
42. R. Sorek, V. Kunin, P. Hugenholtz, CRISPR — a widespread system that provides acquired resistance against phages in bacteria and archaea. Nature Reviews Microbiology 6, 181 (2008).
43. F. J. M. Mojica, C. s. Díez-Villaseñor, J. García-Martínez, E. Soria, Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements. Journal of Molecular Evolution 60, 174-182 (2005).
44. A. Bolotin, B. Quinquis, A. Sorokin, S. D. Ehrlich, Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. 151, 2551-2561 (2005).
45. C. Pourcel, G. Salvignol, G. Vergnaud, CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151, 653-663 (2005).
46. R. Barrangou, L. A. Marraffini, CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Molecular cell 54, 234-244 (2014).
47. E. V. Koonin, K. S. Makarova, F. Zhang, Diversity, classification and evolution of CRISPR-Cas systems. Current Opinion in Microbiology 37, 67-78 (2017).
48. P. D. Hsu, E. S. Lander, F. Zhang, Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262-1278 (2014).
49. M. Jinek et al., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821 (2012).
50. L. Cong et al., Multiplex Genome Engineering Using CRISPR/Cas Systems. Science (New York, N.Y.) 339, 819-823 (2013).
51. P. Mali et al., RNA-Guided Human Genome Engineering via Cas9. Science (New York, N.Y.) 339, 823-826 (2013).
52. L. A. Gilbert et al., CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442-451 (2013).
53. A. Chavez et al., Highly efficient Cas9-mediated transcriptional programming. Nat Methods 12, 326-328 (2015).
54. M. E. Tanenbaum, L. A. Gilbert, L. S. Qi, J. S. Weissman, R. D. Vale, A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635-646 (2014).
55. S. Konermann et al., Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583-588 (2015).
56. X. Xu et al., A CRISPR-based approach for targeted DNA demethylation. Cell Discov 2, 16009 (2016).
57. X. S. Liu et al., Editing DNA Methylation in the Mammalian Genome. Cell 167, 233-247 e217 (2016).
58. D. Cano-Rodriguez et al., Writing of H3K4Me3 overcomes epigenetic silencing in a sustained but context-dependent manner. Nat Commun 7, 12284 (2016).
59. I. B. Hilton et al., Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nature biotechnology 33, 510-517 (2015).
60. A. Chavez et al., Comparison of Cas9 activators in multiple species. Nat Methods 13, 563-567 (2016).
61. L. S. Qi et al., Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173-1183 (2013).
62. A. Vojta et al., Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res 44, 5615-5628 (2016).
63. Y. H. Huang et al., DNA epigenome editing using CRISPR-Cas SunTag-directed DNMT3A. Genome Biol 18, 176 (2017).
64. P. Stepper et al., Efficient targeted DNA methylation with chimeric dCas9-Dnmt3a-Dnmt3L methyltransferase. Nucleic Acids Res 45, 1703-1713 (2017).
65. A. Amabile et al., Inheritable Silencing of Endogenous Genes by Hit-and-Run Targeted Epigenetic Editing. Cell 167, 219-232 e214 (2016).
66. N. C. Yeo et al., An enhanced CRISPR repressor for targeted mammalian gene regulation. Nat Methods 15, 611-616 (2018).
67. C. Y. Lin et al., The use of ASCs engineered to express BMP2 or TGF-β3 within scaffold constructs to promote calvarial bone repair. Biomaterials 34, 9401-9412 (2013).
68. K. C. Li et al., Improved calvarial bone repair by hASCs engineered with Cre/loxP-based baculovirus conferring prolonged BMP-2 and MiR-148b co-expression. J Tissue Eng Regen Med 11, 3068-3077 (2017).
69. P. N. Dang et al., Endochondral Ossification in Critical‐Sized Bone Defects via Readily Implantable Scaffold‐Free Stem Cell Constructs. Stem Cells Translational Medicine 6, 1644-1659 (2017).
70. S. C. Dennis, C. J. Berkland, L. F. Bonewald, M. S. Detamore, Endochondral Ossification for Enhancing Bone Regeneration: Converging Native Extracellular Matrix Biomaterials and Developmental Engineering In Vivo. Tissue Engineering Part B: Reviews 21, 247-266 (2014).
71. G. Yu et al., in Adipose-Derived Stem Cells: Methods and Protocols, J. M. Gimble, B. A. Bunnell, Eds. (Humana Press, Totowa, NJ, 2011), pp. 193-200.
72. C.-H. Lu et al., Regenerating Cartilages by Engineered ASCs: Prolonged TGF-β3/BMP-6 Expression Improved Articular Cartilage Formation and Restored Zonal Structure. Molecular Therapy 22, 186-195 (2014).
73. D. Lasar et al., Peroxisome Proliferator Activated Receptor Gamma Controls Mature Brown Adipocyte Inducibility through Glycerol Kinase. Cell Reports 22, 760-773 (2018).
74. T. Vavouri, J. I. Semple, R. Garcia-Verdugo, B. Lehner, Intrinsic protein disorder and interaction promiscuity are widely associated with dosage sensitivity. Cell 138, 198-208 (2009).
75. J. A. Birchler, R. A. Veitia, Gene balance hypothesis: connecting issues of dosage sensitivity across biological disciplines. Proc Natl Acad Sci U S A 109, 14746-14753 (2012).
76. Y. Eguchi et al., Estimating the protein burden limit of yeast cells by measuring the expression limits of glycolytic proteins. Elife 7, (2018).
77. A. Franceschini et al., Specific inhibition of diverse pathogens in human cells by synthetic microRNA-like oligonucleotides inferred from RNAi screens. Proc Natl Acad Sci U S A 111, 4548-4553 (2014).
78. A. L. Jackson et al., Widespread siRNA "off-target" transcript silencing mediated by seed region sequence complementarity. RNA 12, 1179-1187 (2006).
79. D. H. Doro, A. E. Grigoriadis, K. J. Liu, Calvarial Suture-Derived Stem Cells and Their Contribution to Cranial Bone Repair. Front Physiol 8, 956 (2017).
80. S. Au, W. Wu, N. Panté, Baculovirus Nuclear Import: Open, Nuclear Pore Complex (NPC) Sesame. Viruses 5, 1885-1900 (2013).
81. M. N. Hsu et al., CRISPR technologies for stem cell engineering and regenerative medicine. Biotechnol Adv 37, 107447 (2019).
82. Jesse G. Zalatan et al., Engineering Complex Synthetic Transcriptional Programs with CRISPR RNA Scaffolds. Cell 160, 339-350 (2015).
83. C.-C. Shen, L.-Y. Sung, S.-Y. Lin, M.-W. Lin, Y.-C. Hu, Enhancing Protein Production Yield from Chinese Hamster Ovary Cells by CRISPR Interference. ACS Synthetic Biology 6, 1509-1519 (2017).
84. S.-C. Lo et al., Enhanced critical-size calvarial bone healing by ASCs engineered with Cre/loxP-based hybrid baculovirus. Biomaterials 124, 1-11 (2017).
85. Y. Gao et al., Complex transcriptional modulation with orthogonal and inducible dCas9 regulators. Nature Methods 13, 1043 (2016).
86. S. Konermann et al., Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583-588 (2015).
87. M.-N. Hsu et al., CRISPR interference-mediated noggin knockdown promotes BMP2-induced osteogenesis and calvarial bone healing. Biomaterials 252, 120094 (2020).
88. J. Tycko, V. E. Myer, P. D. Hsu, Methods for Optimizing CRISPR-Cas9 Genome Editing Specificity. Molecular cell 63, 355-370 (2016).
89. L. A. Gilbert et al., Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation. Cell 159, 647-661 (2014).
90. V. Potapov et al., Comprehensive Profiling of Four Base Overhang Ligation Fidelity by T4 DNA Ligase and Application to DNA Assembly. ACS Synthetic Biology 7, 2665-2674 (2018).
91. A. R. Crowe, W. Yue, Semi-quantitative Determination of Protein Expression using Immunohistochemistry Staining and Analysis: An Integrated Protocol. Bio Protoc 9, e3465 (2019).
92. J. Y. Qin et al., Systematic Comparison of Constitutive Promoters and the Doxycycline-Inducible Promoter. PLOS ONE 5, e10611 (2010).
93. P. Perez-Pinera et al., RNA-guided gene activation by CRISPR-Cas9–based transcription factors. Nature Methods 10, 973 (2013).
94. M. L. Maeder et al., CRISPR RNA–guided activation of endogenous human genes. Nature Methods 10, 977 (2013).
95. M. I. Lefterova, A. K. Haakonsson, M. A. Lazar, S. Mandrup, PPARγ and the global map of adipogenesis and beyond. Trends in Endocrinology & Metabolism 25, 293-302 (2014).
96. V. Lefebvre, M. Dvir-Ginzberg, SOX9 and the many facets of its regulation in the chondrocyte lineage. Connective tissue research 58, 2-14 (2017).
97. M. Wu, G. Chen, Y.-P. Li, TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Research 4, 16009 (2016).
98. P. Tontonoz, B. M. Spiegelman, Fat and Beyond: The Diverse Biology of PPARγ. Annual Review of Biochemistry 77, 289-312 (2008).
99. L.-Y. Sung et al., Enhanced and prolonged baculovirus-mediated expression by incorporating recombinase system and in cis elements: a comparative study. Nucleic Acids Research 41, e139-e139 (2013).
100. D. Soares da Costa, R. L. Reis, I. Pashkuleva, Sulfation of Glycosaminoglycans and Its Implications in Human Health and Disorders. Annual Review of Biomedical Engineering 19, 1-26 (2017).
101. K. Gelse, E. Pöschl, T. Aigner, Collagens—structure, function, and biosynthesis. Advanced Drug Delivery Reviews 55, 1531-1546 (2003).
102. N. S. Gudmann, M. A. Karsdal, in Biochemistry of Collagens, Laminins and Elastin, M. A. Karsdal, Ed. (Academic Press, 2016), pp. 73-76.
103. Q. Q. Tang, M. D. Lane, Adipogenesis: From Stem Cell to Adipocyte. Annual Review of Biochemistry 81, 715-736 (2012).
104. S. R. Farmer, Transcriptional control of adipocyte formation. Cell Metabolism 4, 263-273 (2006).
105. T. Ahfeldt et al., Programming human pluripotent stem cells into white and brown adipocytes. Nature Cell Biology 14, 209-219 (2012).
106. C.-Y. Lin et al., The use of ASCs engineered to express BMP2 or TGF-β3 within scaffold constructs to promote calvarial bone repair. Biomaterials 34, 9401-9412 (2013).
107. E. Gómez-Barrena et al., Bone fracture healing: Cell therapy in delayed unions and nonunions. Bone 70, 93-101 (2015).
108. R. Marsell, T. A. Einhorn, THE BIOLOGY OF FRACTURE HEALING. Injury 42, 551-555 (2011).
109. P. Gehron Robey, in Principles of Bone Biology (Third Edition), L. G. Raisz, T. J. Martin, Eds. (Academic Press, San Diego, 2008), pp. 335-349.
110. Z. Liu et al., Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector. Scientific Reports 7, 2193 (2017).
111. M. Bionaz, E. Monaco, M. B. Wheeler, Transcription Adaptation during In Vitro Adipogenesis and Osteogenesis of Porcine Mesenchymal Stem Cells: Dynamics of Pathways, Biological Processes, Up-Stream Regulators, and Gene Networks. PLOS ONE 10, e0137644 (2015).
112. Y. Furuhata, Y. Nihongaki, M. Sato, K. Yoshimoto, Control of Adipogenic Differentiation in Mesenchymal Stem Cells via Endogenous Gene Activation Using CRISPR-Cas9. ACS Synthetic Biology 6, 2191-2197 (2017).
113. D. Balboa et al., Conditionally Stabilized dCas9 Activator for Controlling Gene Expression in Human Cell Reprogramming and Differentiation. Stem Cell Reports 5, 448-459 (2015).
114. J. Weltner et al., Human pluripotent reprogramming with CRISPR activators. Nature Communications 9, 2643 (2018).
115. Joshua B. Black et al., Targeted Epigenetic Remodeling of Endogenous Loci by CRISPR/Cas9-Based Transcriptional Activators Directly Converts Fibroblasts to Neuronal Cells. Cell Stem Cell 19, 406-414 (2016).
116. B. L. Kidder, G. Hu, Z.-X. Yu, C. Liu, K. Zhao, Extended Self-Renewal and Accelerated Reprogramming in the Absence of Kdm5b. Molecular and Cellular Biology 33, 4793-4810 (2013).
117. S. Ye et al., Depletion of Tcf3 and Lef1 maintains mouse embryonic stem cell self-renewal. Biology Open 6, 511-517 (2017).
118. K. Huang, G. Fan, DNA methylation in cell differentiation and reprogramming: an emerging systematic view. Regenerative Medicine 5, 531-544 (2010).
119. V. Lefebvre, P. Li, B. de Crombrugghe, A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. EMBO J 17, 5718-5733 (1998).
120. S. Y. Roth, J. M. Denu, C. D. Allis, Histone Acetyltransferases. Annual Review of Biochemistry 70, 81-120 (2001).
121. I. B. Hilton et al., Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotech 33, 510-517 (2015).
122. V. A. Truong et al., CRISPRai for simultaneous gene activation and inhibition to promote stem cell chondrogenesis and calvarial bone regeneration. Nucleic Acids Research 47, e74-e74 (2019).
123. P. Liu, M. Chen, Y. Liu, L. S. Qi, S. Ding, CRISPR-Based Chromatin Remodeling of the Endogenous Oct4 or Sox2 Locus Enables Reprogramming to Pluripotency. Cell Stem Cell 22, 252-261.e254 (2018).
124. M.-N. Hsu et al., Co-Activation of Endogenous Wnt10b and Foxc2 by CRISPR Activation (CRISPRa) Enhances BMSCs Osteogenesis and Promotes Calvarial Bone Regeneration. Molecular Therapy, (2019).
125. J. Justesen et al., Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2, 165-171 (2001).
126. K. Nishikawa et al., Maf promotes osteoblast differentiation in mice by mediating the age-related switch in mesenchymal cell differentiation. J Clin Invest 120, 3455-3465 (2010).
127. M. Kassem, P. J. Marie, Senescence-associated intrinsic mechanisms of osteoblast dysfunctions. 10, 191-197 (2011).
128. H. Jing et al., Suppression of EZH2 Prevents the Shift of Osteoporotic MSC Fate to Adipocyte and Enhances Bone Formation During Osteoporosis. Molecular therapy : the journal of the American Society of Gene Therapy 24, 217-229 (2016).
129. P. M. de Sá, A. J. Richard, H. Hang, J. M. Stephens, in Comprehensive Physiology. (John Wiley & Sons, Inc., 2011).
130. P. Høegh-Andersen et al., Ovariectomized rats as a model of postmenopausal osteoarthritis: validation and application. Arthritis Res Ther 6, R169 (2004).
131. A. Vojta et al., Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Research 44, 5615-5628 (2016).
132. A. Amabile et al., Inheritable Silencing of Endogenous Genes by Hit-and-Run Targeted Epigenetic Editing. Cell 167, 219-232.e214 (2016).
133. P. Stepper et al., Efficient targeted DNA methylation with chimeric dCas9–Dnmt3a–Dnmt3L methyltransferase. Nucleic Acids Research 45, 1703-1713 (2017).
134. J. E. Cecil et al., The Pro12Ala and C–681G variants of the PPARG locus are associated with opposing growth phenotypes in young schoolchildren. Diabetologia 48, 1496-1502 (2005).
135. J. Wei, S. Bhattacharyya, M. Jain, J. Varga, Regulation of Matrix Remodeling by Peroxisome Proliferator-Activated Receptor-γ: A Novel Link Between Metabolism and Fibrogenesis. Open Rheumatol J 6, 103-115 (2012).
136. K.-C. Li, Y.-C. Hu, Cartilage Tissue Engineering: Recent Advances and Perspectives from Gene Regulation/Therapy. Advanced Healthcare Materials 4, 948-968 (2015).
137. B. C. Sondergaard et al., Calcitonin directly attenuates collagen type II degradation by inhibition of matrix metalloproteinase expression and activity in articular chondrocytes. Osteoarthritis and Cartilage 14, 759-768 (2006).
138. X. Zheng et al., Dynamic expression of matrix metalloproteinases 2, 9 and 13 in ovariectomy-induced osteoporosis rats. Exp Ther Med 16, 1807-1813 (2018).
139. P. Bianco, L. W. Fisher, M. F. Young, J. D. Termine, P. G. Robey, Expression of bone sialoprotein (BSP) in developing human tissues. Calcified Tissue International 49, 421-426 (1991).
140. L. Malaval et al., Bone sialoprotein plays a functional role in bone formation and osteoclastogenesis. J Exp Med 205, 1145-1153 (2008).
141. W. T. Butler, The Nature and Significance of Osteopontin. Connective Tissue Research 23, 123-136 (1989).
142. T. Yabe, A. Nemoto, T. Uemura, Recognition of Osteopontin by Rat Bone Marrow Derived Osteoblastic Primary Cells. Bioscience, Biotechnology, and Biochemistry 61, 754-756 (1997).
143. P. V. Hauschka, J. B. Lian, D. E. Cole, C. M. Gundberg, Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. 69, 990-1047 (1989).
144. E. R. Gibney, C. M. Nolan, Epigenetics and gene expression. Heredity 105, 4-13 (2010).
145. J. H. Shrimp et al., Chemical Control of a CRISPR-Cas9 Acetyltransferase. ACS Chemical Biology 13, 455-460 (2018).
146. A. Chavez et al., Comparison of Cas9 activators in multiple species. Nat Meth 13, 563-567 (2016).
147. P. Limsirichai, T. Gaj, D. V. Schaffer, CRISPR-mediated Activation of Latent HIV-1 Expression. Mol Ther 24, 499-507 (2016).
148. M. Pei et al., A comparison of tissue engineering based repair of calvarial defects using adipose stem cells from normal and osteoporotic rats. Bone 78, 1-10 (2015).
149. J. I. McDonald et al., Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation. Biology Open, (2016).
150. K.-C. Li, Y.-H. Chang, C.-L. Yeh, Y.-C. Hu, Healing of osteoporotic bone defects by baculovirus-engineered bone marrow-derived MSCs expressing MicroRNA sponges. Biomaterials 74, 155-166 (2016).
151. A. Vojta et al., Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Research 44, 5615-5628 (2016).
152. B. Kantor et al., Downregulation of SNCA Expression by Targeted Editing of DNA Methylation: A Potential Strategy for Precision Therapy in PD. Mol Ther 26, 2638-2649 (2018).
153. D. R. Tarjan, W. A. Flavahan, B. E. Bernstein, Epigenome editing strategies for the functional annotation of CTCF insulators. Nat Commun 10, 4258 (2019).
154. J. R. Friedman et al., KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes & Development 10, 2067-2078 (1996).
155. R. F. Ryan et al., KAP-1 Corepressor Protein Interacts and Colocalizes with Heterochromatic and Euchromatic HP1 Proteins: a Potential Role for Krüppel-Associated Box–Zinc Finger Proteins in Heterochromatin-Mediated Gene Silencing. 19, 4366-4378 (1999).
156. D. C. Schultz, K. Ayyanathan, D. Negorev, G. G. Maul, F. J. Rauscher, 3rd, SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes & development 16, 919-932 (2002).
157. D. C. Schultz, J. R. Friedman, F. J. Rauscher, Targeting histone deacetylase complexes via KRAB-zinc finger proteins: the PHD and bromodomains of KAP-1 form a cooperative unit that recruits a novel isoform of the Mi-2α subunit of NuRD. Genes & Development 15, 428-443 (2001).
158. F. Fuks, P. J. Hurd, R. Deplus, T. Kouzarides, The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic acids research 31, 2305-2312 (2003).
159. J. Newell-Price, A. J. L. Clark, P. King, DNA Methylation and Silencing of Gene Expression. Trends in Endocrinology & Metabolism 11, 142-148 (2000).
160. R. R. Meehan, J. D. Lewis, A. P. Bird, Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA. Nucleic acids research 20, 5085-5092 (1992).
161. B. Hendrich, A. Bird, Identification and characterization of a family of mammalian methyl-CpG binding proteins. Molecular and cellular biology 18, 6538-6547 (1998).
162. X. Nan et al., Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386-389 (1998).
163. Q.-H. Zhao et al., PPARγ forms a bridge between DNA methylation and histone acetylation at the C/EBPα gene promoter to regulate the balance between osteogenesis and adipogenesis of bone marrow stromal cells. The FEBS journal 280, 5801-5814 (2013).
164. M. He et al., Genome-Wide Chromatin Structure Changes During Adipogenesis and Myogenesis. Int J Biol Sci 14, 1571-1585 (2018).
165. J. Stachecka, J. Nowacka-Woszuk, P. A. Kolodziejski, I. Szczerbal, The importance of the nuclear positioning of the PPARG gene for its expression during porcine in vitro adipogenesis. Chromosome Res 27, 271-284 (2019).
166. T. Omi et al., Identification and characterization of novel peroxisome proliferator-activated receptor-gamma (PPAR-gamma) transcriptional variants in pig and human. J Anim Breed Genet 122 Suppl 1, 45-53 (2005).
167. N. A. Kearns et al., Functional annotation of native enhancers with a Cas9–histone demethylase fusion. Nature Methods 12, 401-403 (2015).
168. T. S. Klann et al., CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Nature biotechnology 35, 561-568 (2017).
169. Y. Mochizuki et al., Combinatorial CRISPR/Cas9 Approach to Elucidate a Far-Upstream Enhancer Complex for Tissue-Specific Sox9 Expression. Dev Cell 46, 794-806 e796 (2018).
170. E. A. Saunderson et al., Hit-and-run epigenetic editing prevents senescence entry in primary breast cells from healthy donors. Nat Commun 8, 1450 (2017).
171. H. Wang et al., Epigenetic Targeting of Granulin in Hepatoma Cells by Synthetic CRISPR dCas9 Epi-suppressors. Mol Ther Nucleic Acids 11, 23-33 (2018).
172. S. M. G. Braun et al., Rapid and reversible epigenome editing by endogenous chromatin regulators. Nat Commun 8, 560 (2017).
173. N. Hao, K. E. Shearwin, I. B. Dodd, Programmable DNA looping using engineered bivalent dCas9 complexes. Nat Commun 8, 1628 (2017).
174. X. S. Liu et al., Rescue of Fragile X Syndrome Neurons by DNA Methylation Editing of the FMR1 Gene. Cell 172, 979-992 e976 (2018).
175. Alexis C. Komor, Ahmed H. Badran, David R. Liu, CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes. Cell, (2016).
176. S. Q. Tsai, J. K. Joung, Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases. Nat Rev Genet 17, 300-312 (2016).
177. H. Ma et al., CRISPR-Cas9 nuclear dynamics and target recognition in living cells. J Cell Biol 214, 529-537 (2016).
178. D. Gou et al., A novel approach for the construction of multiple shRNA expression vectors. J Gene Med 9, 751-763 (2007).
179. O. T. Brake et al., Lentiviral Vector Design for Multiple shRNA Expression and Durable HIV-1 Inhibition. Mol Ther 16, 557-564 (2008).
180. Y. Gao, Y. Zhao, Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J Integr Plant Biol 56, 343-349 (2014).
181. L. Nissim, S. D. Perli, A. Fridkin, P. Perez-Pinera, T. K. Lu, Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. Mol Cell 54, 698-710 (2014).
182. C. Xie et al., SgRNA Expression of CRIPSR-Cas9 System Based on MiRNA Polycistrons as a Versatile Tool to Manipulate Multiple and Tissue-Specific Genome Editing. Sci Rep 7, 5795 (2017).
183. B. Zetsche et al., Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759-771 (2015).
184. P. Gao, H. Yang, K. R. Rajashankar, Z. Huang, D. J. Patel, Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition. Cell Res 26, 901-913 (2016).
185. D. Kim et al., Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nature biotechnology 34, 863-868 (2016).
186. I. Fonfara, H. Richter, M. Bratovic, A. Le Rhun, E. Charpentier, The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532, 517-521 (2016).
187. T. Yamano et al., Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA. Cell 165, 949-962 (2016).
188. D. Dong et al., The crystal structure of Cpf1 in complex with CRISPR RNA. Nature 532, 522-526 (2016).
189. S. K. Kim et al., Efficient Transcriptional Gene Repression by Type V-A CRISPR-Cpf1 from Eubacterium eligens. ACS Synth Biol 6, 1273-1282 (2017).
190. X. Zhang et al., Multiplex gene regulation by CRISPR-ddCpf1. Cell Discov 3, 17018 (2017).
191. J. L. Zhang et al., Gene repression via multiplex gRNA strategy in Y. lipolytica. Microb Cell Fact 17, 62 (2018).
192. Y. E. Tak et al., Inducible and multiplex gene regulation using CRISPR-Cpf1-based transcription factors. Nat Methods 14, 1163-1166 (2017).
193. Y. Liu et al., Engineering cell signaling using tunable CRISPR–Cpf1-based transcription factors. Nature Communications 8, 2095 (2017).
194. X. Zhang et al., Gene activation in human cells using CRISPR/Cpf1-p300 and CRISPR/Cpf1-SunTag systems. Protein Cell 9, 380-383 (2018).
195. J. Kweon et al., Fusion guide RNAs for orthogonal gene manipulation with Cas9 and Cpf1. Nat Commun 8, 1723 (2017).
196. O. O. Abudayyeh et al., C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353, aaf5573 (2016).
197. O. O. Abudayyeh et al., RNA targeting with CRISPR-Cas13. Nature 550, 280-284 (2017).
198. D. B. T. Cox et al., RNA editing with CRISPR-Cas13. Science 358, 1019-1027 (2017).
199. A. East-Seletsky et al., Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 538, 270-273 (2016).
200. Y. Chen et al., In vitro and in vivo growth inhibition of human cervical cancer cells via human papillomavirus E6/E7 mRNAs' cleavage by CRISPR/Cas13a system. Antiviral Res 178, 104794 (2020).
201. J. S. Gootenberg et al., Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356, 438-442 (2017).