簡易檢索 / 詳目顯示

研究生: 王秋月
Chiou-Yueh Wang
論文名稱: 評估藥物對細胞遷移影響篩選方法之改進
Improvement of a screening assay for evaluation of the effects of drugs on cell migration.
指導教授: 徐祖安
John Tsu-An Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 51
中文關鍵詞: 細胞遷移臍帶靜脈內皮細胞Boyden chamber試驗wound healing試驗MTS assay篩選方法
外文關鍵詞: cell migration, HUVEC, Boyden chamber assay, wound healing assay, MTS assay, screening assay
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 血管新生與癌症之轉移和組織修復息息相關,而細胞的遷移亦與血管新生密不可分。本研究主要有兩個目的即在於 – 找出細胞遷移試驗的最佳化條件以及利用此方法來篩選出具有促進或抑制血管新生的藥物。有很多方法能拿來評估細胞遷移的能力;本實驗主要用兩種方法 – wound healing 試驗以及modified Boyden chamber試驗,因為這兩種方法操作簡單且快速。Wound healing 試驗是在長滿細胞的培養皿上刮出一條痕跡,藉由觀察細胞修復此刮痕的現象進而評估不同化合物對細胞遷移能力的影響。Boyden chamber原本是被設計拿來研究細胞受到化學趨向物(chemotaxis)的影響而移動的裝置。 此裝置有上下兩層chambers,其操作方法為:在下層chamber中加入細胞培養液以及待測的分子,而在上下兩層chambers之間夾一片半透膜,此半透膜的孔徑大小比細胞直徑來的小,所以在正常情況下,細胞不會穿透半透膜到下面的chamber裡,然後在上層chamber中加入含細胞的細胞培養液。最後收集並分析受到化學趨向物而遷移到下層chamber的細胞數,此參數可以作為評估待測的分子對細胞遷移影響的參數。除此之外,MTS assay在本實驗中被使用於測試藥物對細胞的毒性,進而拿來評估藥物之後發展的可行性。利用本實驗我們已經發現有促進和抑制細胞遷移潛力的藥物。這些具有促進血管新生的藥物可以應用在組織工程裡;而能抑制血管新生的藥物則可以利用在抑制癌細胞的生長或擴散。


    Cell migration is associated with angiogenesis, which is the phenomenon of new blood vessel formation. Angiogenesis plays an important role in cancer invasion or metastasis as well as tissue engineering. There are two specific aims in this thesis. One is to optimize cell migration assay and the other one is to discover compounds with pro- or anti-angiogenesis activity. Several published methods have been utilized to study cell migration, and we employed two methods, i.e., wound healing assay and modified Boyden chamber assay in this study because they were simple and fast. Wound healing assay was performed by scraping the monolayer of the cells with a pipette tip, and then observing the recovery ability of the cells that were treated with various compounds. The Boyden chamber was originally designed to study chemotaxis. It consists of two chambers and a chemo attractant is placed in the lower chamber, while cells are seeded on the upper chamber. There is a porous membrane between these two chambers, and only cells that migrate actively can go to the lower chamber. The degree of chemotaxis response can be determined by microscopy by counting the transmigrated cells. In addition to cell migration ability, cytotoxicities of the cells were also estimated. In this study, we found some small molecule compounds showed pro- and anti-angiogenesis potentiality. Drugs with pro-angiogenesis activity have potential application in tissue engineering, while drugs with anti-angiogenesis ability may be utilized for cancer treatment.

    Abstract.............................................Ⅰ Abstract in Chinese..................................Ⅱ Table of contents....................................Ⅲ List of figures and table............................Ⅳ Abbreviation.........................................Ⅴ 1. Introduction.......................................1 1.1 Angiogenesis......................................1 1.2 Angiogenic mechanism..............................2 1.3 Angiogenic activators.............................2 1.3.1 VEGF............................................3 1.4 Angiogenic inhibitors.............................3 1.4.1 SU11248.........................................3 1.5 Tumor angiogenesis and cancer therapy.............3 1.6 Human umbilical vein endothelial cells............5 1.7 Modified Boyden chamber...........................5 1.8 Wound healing.....................................5 2. Materials and methods..............................7 2.1 Materials.........................................7 2.2 Methods...........................................8 2.2.1 Human umbilical vein endothelial cells harvest..8 2.2.2 HUVEC Identification by immunofluorescence assay (IFA)..9 2.2.3 Adhesion assay..................................9 2.2.4 Cell migration assay............................9 2.2.4.1 Wound healing assay...........................9 2.2.4.2 Modified Boyden chamber assay.................9 2.2.4.3 Transwell assay..............................10 2.2.5 Cell cytotoxicity assay........................10 2.2.6 Statistical analysis...........................11 3. Results...........................................12 3.1 Establishment of continuous HUVEC cell line......12 3.1.1 HUVEC harvest..................................12 3.1.2 HUVEC identification...........................12 3.1.3 HUVEC maintainence.............................12 3.2 Adhesion assay...................................13 3.3 HUVEC migration assays...........................14 3.3.1 Using modified Boyden chamber..................14 3.3.2 Using Falcon™ HTS Fluoroblok™ Inserts..........15 3.3.3 Using wound healing assay......................16 3.4 MTS assay........................................16 4. Discussion........................................18 4.1 HUVEC performance................................18 4.2 Adhesion assays..................................18 4.3 Modified Boyden chamber and wound healing assays.19 4.4 Cytotoxicity assay...............................20 5. Conclusion........................................21 6. References........................................22

    1.Klemke, R. L. et al. CAS/Crk coupling serves as a "molecular switch" for induction of cell migration. J Cell Biol 140, 961-72 (1998).
    2.Pardanaud, L., Yassine, F. & Dieterlen-Lievre, F. Relationship between vasculogenesis, angiogenesis and haemopoiesis during avian ontogeny. Development 105, 473-85 (1989).
    3.Poole, T. J. & Coffin, J. D. Vasculogenesis and angiogenesis: two distinct morphogenetic mechanisms establish embryonic vascular pattern. J Exp Zool 251, 224-31 (1989).
    4.Holmgren, L., Glaser, A., Pfeifer-Ohlsson, S. & Ohlsson, R. Angiogenesis during human extraembryonic development involves the spatiotemporal control of PDGF ligand and receptor gene expression. Development 113, 749-54 (1991).
    5.Hunt, T. K., Knighton, D. R., Thakral, K. K., Goodson, W. H., 3rd & Andrews, W. S. Studies on inflammation and wound healing: angiogenesis and collagen synthesis stimulated in vivo by resident and activated wound macrophages. Surgery 96, 48-54 (1984).
    6.Arnold, F. & West, D. C. Angiogenesis in wound healing. Pharmacol Ther 52, 407-22 (1991).
    7.Wheeler, T., Elcock, C. L. & Anthony, F. W. Angiogenesis and the placental environment. Placenta 16, 289-96 (1995).
    8.Fraser, H. M. & Lunn, S. F. Angiogenesis and its control in the female reproductive system. Br Med Bull 56, 787-97 (2000).
    9.Folkman, J. Tumor angiogenesis: therapeutic implications. N Engl J Med 285, 1182-6 (1971).
    10.Folkman, J. Tumor angiogenesis: a possible control point in tumor growth. Ann Intern Med 82, 96-100 (1975).
    11.Folkman, J. What is the role of angiogenesis in metastasis from cutaneous melanoma? Eur J Cancer Clin Oncol 23, 361-3 (1987).
    12.Isner, J. M. Therapeutic angiogenesis: a new frontier for vascular therapy. Vasc Med 1, 79-87 (1996).
    13.Mahadevan, V. & Hart, I. R. Metastasis and angiogenesis. Acta Oncol 29, 97-103 (1990).
    14.Nariai, T. et al. Surgically induced angiogenesis to compensate for hemodynamic cerebral ischemia. Stroke 25, 1014-21 (1994).
    15.Gross, J. L., Moscatelli, D. & Rifkin, D. B. Increased capillary endothelial cell protease activity in response to angiogenic stimuli in vitro. Proc Natl Acad Sci U S A 80, 2623-7 (1983).
    16.Folkman, J. Angiogenesis: initiation and control. Ann N Y Acad Sci 401, 212-27 (1982).
    17.Ingber, D. E. & Folkman, J. Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J Cell Biol 109, 317-30 (1989).
    18.Folkman, J. & Shing, Y. Angiogenesis. J Biol Chem 267, 10931-4 (1992).
    19.Connolly, D. T. et al. Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. J Clin Invest 84, 1470-8 (1989).
    20.Olofsson, B. et al. Vascular endothelial growth factor B, a novel growth factor for endothelial cells. Proc Natl Acad Sci U S A 93, 2576-81 (1996).
    21.Eppley, B. L., Doucet, M., Connolly, D. T. & Feder, J. Enhancement of angiogenesis by bFGF in mandibular bone graft healing in the rabbit. J Oral Maxillofac Surg 46, 391-8 (1988).
    22.Kurachi, K., Davie, E. W., Strydom, D. J., Riordan, J. F. & Vallee, B. L. Sequence of the cDNA and gene for angiogenin, a human angiogenesis factor. Biochemistry 24, 5494-9 (1985).
    23.Sato, N. et al. Actions of TNF and IFN-gamma on angiogenesis in vitro. J Invest Dermatol 95, 85S-89S (1990).
    24.McNamara, D. A., Harmey, J. H., Walsh, T. N., Redmond, H. P. & Bouchier-Hayes, D. J. Significance of angiogenesis in cancer therapy. Br J Surg 85, 1044-55 (1998).
    25.Cross, M. J., Dixelius, J., Matsumoto, T. & Claesson-Welsh, L. VEGF-receptor signal transduction. Trends Biochem Sci 28, 488-94 (2003).
    26.Robinson, C. J. & Stringer, S. E. The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci 114, 853-65 (2001).
    27.O'Reilly, M. S. et al. Angiostatin: a circulating endothelial cell inhibitor that suppresses angiogenesis and tumor growth. Cold Spring Harb Symp Quant Biol 59, 471-82 (1994).
    28.O'Reilly, M. S. et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315-28 (1994).
    29.Good, D. J. et al. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci U S A 87, 6624-8 (1990).
    30.Iruela-Arispe, M. L., Porter, P., Bornstein, P. & Sage, E. H. Thrombospondin-1, an inhibitor of angiogenesis, is regulated by progesterone in the human endometrium. J Clin Invest 97, 403-12 (1996).
    31.Frater-Schroder, M., Risau, W., Hallmann, R., Gautschi, P. & Bohlen, P. Tumor necrosis factor type alpha, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo. Proc Natl Acad Sci U S A 84, 5277-81 (1987).
    32.Cao, Y. Endogenous angiogenesis inhibitors: angiostatin, endostatin, and other proteolytic fragments. Prog Mol Subcell Biol 20, 161-76 (1998).
    33.O'Reilly, M. S. et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277-85 (1997).
    34.Hoyt, D. G., Mannix, R. J., Rusnak, J. M., Pitt, B. R. & Lazo, J. S. Collagen is a survival factor against LPS-induced apoptosis in cultured sheep pulmonary artery endothelial cells. Am J Physiol 269, L171-7 (1995).
    35.Ingber, D. et al. Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumour growth. Nature 348, 555-7 (1990).
    36.Osusky, K. L. et al. The receptor tyrosine kinase inhibitor SU11248 impedes endothelial cell migration, tubule formation, and blood vessel formation in vivo, but has little effect on existing tumor vessels. Angiogenesis 7, 225-33 (2004).
    37.Folkman, J., Merler, E., Abernathy, C. & Williams, G. Isolation of a tumor factor responsible for angiogenesis. J Exp Med 133, 275-88 (1971).
    38.Weidner, N., Semple, J. P., Welch, W. R. & Folkman, J. Tumor angiogenesis and metastasis--correlation in invasive breast carcinoma. N Engl J Med 324, 1-8 (1991).
    39.Folkman, J. Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg 175, 409-16 (1972).
    40.Zhu, Z. & Witte, L. Inhibition of tumor growth and metastasis by targeting tumor-associated angiogenesis with antagonists to the receptors of vascular endothelial growth factor. Invest New Drugs 17, 195-212 (1999).
    41.Harris, S. R. & Thorgeirsson, U. P. Tumor angiogenesis: biology and therapeutic prospects. In Vivo 12, 563-70 (1998).
    42.Gastl, G. et al. Angiogenesis as a target for tumor treatment. Oncology 54, 177-84 (1997).
    43.Langer, R., Conn, H., Vacanti, J., Haudenschild, C. & Folkman, J. Control of tumor growth in animals by infusion of an angiogenesis inhibitor. Proc Natl Acad Sci U S A 77, 4331-5 (1980).
    44.Folkman, J. Angiogenesis and apoptosis. Semin Cancer Biol 13, 159-67 (2003).
    45.Scappaticci, F. A. Mechanisms and future directions for angiogenesis-based cancer therapies. J Clin Oncol 20, 3906-27 (2002).
    46.Boyden, S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med 115, 453-66 (1962).
    47.Chou, R. H. et al. Cost-effective trapezoidal modified Boyden chamber with comparable accuracy to a commercial apparatus. Biotechniques 37, 724-6 (2004).
    48.Jaffe, E. A., Nachman, R. L., Becker, C. G. & Minick, C. R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 52, 2745-56 (1973).
    49.Chiu, J. J., Chen, L. J., Chen, C. N., Lee, P. L. & Lee, C. I. A model for studying the effect of shear stress on interactions between vascular endothelial cells and smooth muscle cells. J Biomech 37, 531-9 (2004).
    50.Ashikari-Hada, S., Habuchi, H., Kariya, Y. & Kimata, K. Heparin regulates vascular endothelial growth factor165-dependent mitogenic activity, tube formation, and its receptor phosphorylation of human endothelial cells. Comparison of the effects of heparin and modified heparins. J Biol Chem 280, 31508-15 (2005).
    51.Pourgholami, M. H., Yan Cai, Z., Lu, Y., Wang, L. & Morris, D. L. Albendazole: a potent inhibitor of vascular endothelial growth factor and malignant ascites formation in OVCAR-3 tumor-bearing nude mice. Clin Cancer Res 12, 1928-35 (2006).
    52.Kwak, H. J. et al. Emodin inhibits vascular endothelial growth factor-A-induced angiogenesis by blocking receptor-2 (KDR/Flk-1) phosphorylation. Int J Cancer 118, 2711-20 (2006).
    53.Zetter, B. R. Angiogenesis and tumor metastasis. Annu Rev Med 49, 407-24 (1998).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE