簡易檢索 / 詳目顯示

研究生: 陳詩尹
Chen, Shih-Yin
論文名稱: 稻米花藥非特異性脂質傳輸蛋白質之純化、特性與功能研究
Purification, Characterization and Functional Studies of Nonspecific Lipid Transfer Proteins in Rice Anther
指導教授: 呂平江
Lyu, Ping-Chiang
口試委員: 林彩雲
黃煥中
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 61
中文關鍵詞: 脂質運輸蛋白
外文關鍵詞: lipid transfer protein
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 植物非特異性脂質傳輸蛋白質是一群分子量小且多為鹼性的蛋白質。依照他們分子量的差異主要被分為兩種類型,第一型(nsLTP1)的分子量約九千道耳吞(9KDa),第二型(nsLTP2)的分子量約七千道耳吞(7KDa)。而在近期的研究中,一些花藥特異表現蛋白質因為和非特異性脂質傳輸蛋白質具有序列上的同源性,因此被定義成第三型非特異性脂質傳輸蛋白質。然而,第三型非特異性脂質傳輸蛋白質的脂質傳輸及與脂質結合特性都尚未被研究。在本篇論文中,我們探討兩個被認為和雄性花藥不孕相關的非特異性脂質傳輸蛋白質,分別是LTP49 (第二型, Os01g49650)以及LTP43 (第三型,Os08g43290)。從我們的實驗結果發現,LTP43和LTP49均展現出高度的熱穩定性。而在化學變性實驗中,LTP43的穩定性(Cm>6M GdnHCl) 則高於LTP49 (Cm ~3.2M GdnHCl)。此外,我們也研究這兩個蛋白質的脂質結合與傳輸功能上的生物活性。從結果可以發現LTP49具有與脂質結合及傳輸脂質的活性;相反的,LTP43則不具此活性。從螢光實驗分析,我們推測LTP43的疏水性空腔(hydrophobic cavity)可能較小或此空腔被包埋於蛋白質結構中。此外,我們利用電腦計算模擬出LTP49和脂質之複合體結構且發現這些脂質確實都會結合到LTP49的疏水性空腔中。近期內,我們也將利用核磁共振解出這兩個蛋白質的結構,進一步去探討非特異性脂質傳輸蛋白質之結構與功能的相關性。


    Plant non-specific lipid transfer proteins (nsLTPs) are small and basic proteins. They are mainly divided into two subfamilies according to their molecular masses: nsLTP1 (9-kDa) and nsLTP2 (7-kDa). Recently, some anther-specific proteins have considerable homologies with plant nsLTPs, and have been classified as nsLTP3. However, the lipid transfer ability and biophysical properties of nsLTP3 is still unclear. In this study we focused on a nsLTP2 (Os01g49650, abbreviation LTP49) and a nsLTP3 (Os08g43290, abbreviation LTP43), which were reported to be involved in anther male sterility. They both exhibited highly structural stabilities against temperature (up to96℃) from the results of circular dichroism (CD) spectroscopy. In chemical denaturation experiments, a higher concentration of GdnHCl was required to denature LTP3 (Cm > 6M) than the concentration of LTP49 (Cm ~3.2M). Furthermore, the functional assays of lipid binding and lipid transfer activities were performed. The results showed that LTP49 displayed both lipid binding and lipid transfer activities while LTP43 could not interact with lipid molecules. We proposed that the hydrophobic cavity of LTP43 might be small or buried in the structure from the fluorescence data. Besides, the docking model was constructed to mimic the LTP49-lipid complex structure and all the results suggested that some lipids could bind into the hydrophobic cavity of LTP49. In the near future, several 2D and 3D NMR spectra has been carried out and the solution structures of these two nsLTP would be determined to further figure out the relationships between structure and binding/transfer activity of nsLTPs.

    Contents Contents 1 Abstract 3 中文摘要 4 Abbreviations 5 Chapter 1. Introduction 6 1.1 Plant nonspecific lipid transfer proteins (nsLTP) 6 1.2 Multiple biological functions of nsLTPs 6 1.3 Structural characteristics of nsLTPs 7 1.4 Previous study in our laboratory 7 1.5 The theme of this thesis 8 Chapter 2. Materials and Method 10 Material 10 2.1 Expression and Purification of nsLTPs 11 2.2 Mass analysis 12 2.3 Quantification of protein concentration 12 2.4 Circular Dichroism (CD) Experiments 13 2.5 Lipid Transfer Assay 14 2.6 Lipid Binding Assay 14 2.7 Nuclear Magnetic Resonance (NMR) Experiments 15 2.8 Molecular Modeling and Docking 15 Chapter 3. Result and Discussion 17 3.1 Expression and Purification 17 3.2 Secondary Structure of nsLTPs 18 3.3 Stability Comparison of LTP49 and LTP43 18 3.4 NMR Spectroscopy 19 3.5 Lipid Transfer Assay 20 3.6 Ligand Binding Assay 20 3.6.1 ANS Competition Assay 20 3.6.2 Isothermal Titration Calorimeter (ITC) Experiments 21 3.6.3 1H-15N HSQC Titration 22 3.7 Molecular Modeling and Docking 22 3.8 LTP43 is a lipid transfer protein or not? 23 Chapter 4. Conclusion 25 Chapter 5. The Attached Tables and Figures 27 Table 1. The property of nonspecific lipid transfer proteins which we discussed in this study. 27 Table 2. The list of lipid molecules we used in this study. 28 Figure 1. Construction of the recombinant plasmid, pET32a-LTP49, and SDS-PAGE of expression and purification. 29 Figure 2. Construction of the recombinant plasmid, pET32a-LTP43 and SDS-PAGE of expression and purification. 30 Figure 3. HPLC profile of LTP49 and LTP43. 31 Figure 4. Mass spectra of LTP49 and LTP43. 32 Figure 5. Sequence alignments of structured nsLTP2s with LTP49 and LTP43. 33 Figure 6. Far-UV CD spectra of LTP49 and LTP43. 34 Figure 7. The thermal denaturation curves of nsLTP49 and nsLTP43. 35 Figure 8. Chemical denaturation curves of the LTP49 and LTP43. 36 Figure 9. Chemical denaturation curves of the nsLTP49 and nsLTP43. 37 Figure 10. pH titration of LTP49 and LTP43. 38 Figure 11. 2D-TOCSY and 2D-NOESY spectra of LTP49 and LTP43 39 Figure 12. pyrPtdCho and Myr2PtdGro 40 Figure 13. Lipid transfer assay of LTP49, LTP43 and nsLTP2. 41 Figure 14. Lipid binding assay by ANS competitive experiment. 42 Figure 15. The diagram of exine synthesis. 43 Figure 16. Lipid binding assay by ANS competitive experiment. 44 Figure 17. Ligands titration with LTP49 45 Figure 18. Ligands titration with LTP43 46 Figure 19. Calorimetric titrations of LTP49 and LTP43 with LysoPC14. 47 Figure 20. The 1H-15N HSQC spectra of LTP49 and LTP43. 48 Figure 21. The 1H-15N HSQC spectra of LTP49 titration with different concentrations of LysoPC14 49 Figure 22. Molecular model and Ramachandran Plot analysis of nsLTP2 and LTP49 50 Figure 23. Molecular docking models 51 Figure 24. The residues on LTP49 and nsLTP2 which interact with ligands 52 Table 3. The residues on LTP49 and nsLTP2 which interact with LysoPC14 53 Table 4. The residues on LTP49 and nsLTP2 which interact with Lauric acid 53 Figure 25. Hydrophobic regions comparison of LTP49 and LTP43. 54 Appendix 1 55 Appendix 2 56 Reference 57

    1. Kader, J. C. (1996) Lipid-transfer protein in plants, Annu. Rev. Plant Physiol.Plant Mol. Biol. 47, 657-54.
    2. Jegou, S., Douliez, J. P., Molle, D., Boivin, P., and Marion, D. (2000) Purification and structural characterization of LTP1 polypeptides from beer. J. Agric Food Chem. 48, 5023-9.
    3. Douliez, J. P., Pato, C., Rabesona, H., Molle., and Marion, D. (2001) Disulfide bond assignment, lipid transfer activity and secondary structure of a 7-kDa plant lipid transfer protein, LTP2. Eur. J. Biochem. 268, 1400-3.
    4. Lauga B, Charbonnel-Campaa L, Combes D. (2000) Characterization of MZm3-3, a Zea mays tapetum-specific transcript. Plant Sci, 157(1):65-75.
    5. Boutrot F, Guirao A, Alary R, Joudrier P, Gautier MF. (2005) Wheat nonspecific lipid transfer protein genes display a complex pattern of expression in developing seeds. Biochim Biophys Acta, Gene Struct Exp, 1730(2):114-125.
    6. Han, G.W., Lee, J. Y., Song, H. K., Chang, C., Min, K., Moon, J., Shin, D. H., Kopka, M. L., Sawaya, M. R., Yuan, H. S., Kim, T. D., Cho, J., Lim, D., Moon, H. J., and Suh, S. W. (2001) Structural basis of non-specific lipid binding in maize lipid-transfer protein complexes revealed by high-resolution X-ray crystallography, J. Mol. Biol. 308, 263-78.
    7. Lerche, M. H., Kragelund, B. B.,Bech, L. M., and Poulsen, F.M. (1997) Barley lipid-transfer protein complexed with palmitoylCoA: the structure reveals a hydrophobic binding site that can expand to fit both large and small lipid-like ligands, Structure 5,291-306.
    8. Sodano, P., Caille, A., Sy, D., de Person, G., Marion, D., and Ptak, M. (1997) 1HNMR and fluorescence studies of the complexation of DMPG by wheat non-specific lipid transfer protein. Global fold of the complex. FEBS Lett. 416: 130-4.
    9. Lindorff-Larsen, K., and Winther, J.R. (2001) Surprisingly high stability of barley lipid transfer protein, LTP1, towards denaturant, heat and proteases. FEBS Lett 488, 145-8.
    10. Sorensen, S. B., Bech, L.M., Muldbjerg, M., Beenfeldt, T. & Breddam, K. (1993) Barley lipid transfer protein 1 is involved in beer foam formation. MBAA Technical Q. 30, 136-145
    11. Hoffmann-Sommergruber, K. (2000) Plant allergens and pathogenesis-related proteins. What do they have in common? Int Arch Allergy Immunol 122, 155-166
    12. Buhot N, Gomes E, Milat ML, Ponchet M, Marion D, Lequeu J, Delrot S, Coutos-Thevenot P, Blein JP. (2004) Modulation of the biologicalactivity of a tobacco LTP1 by lipid complexation. Mol Biol Cell 15:5047–5052.
    13. Blein JP, Coutos-Thevenot P, Marion D, Ponchet M. (2002) From elicitinsto lipid-transfer proteins: a new insight in cell signalling involved inplant defence mechanisms. Trends Plant Sci 7:293–296.
    14. Pyee J, Yu H, Kolattukudy PE. (1994) Identification of a lipid transfer proteinas the major protein in the surface wax of broccoli (Brassicaoleracea) leaves. Arch Biochem Biophys 311:460–468.
    15. Huang, M. D., Wei, F. J., Wu, C. C., Caroline Hsing Y. I., and Huang, H. C. (2009) Analyses of advanced rice anther transcriptomes reveal global tapetum secretory functions and potential proteins for lipid exine formation. Plant Physiology. 149: 694-707.
    16. Subirade, M., Salesse, C., Marion, D., and Pezolet, M. (1995) Interaction of a nonspecific wheat lipid transfer protein with phospholipid monolayers imaged by fluorescence microscopy and studied by infrared spectroscopy, Biophys J 69, 974-88.
    17. Garcia-Garrido, J. M., Menossi, M., Puigdomenech, P., Martinez-Izquierdo, J. A., and Delseny, M. (1998) Characterization of a gene encoding an abscisic acid-inducible type-2 lipid transfer protein from rice, FEBS Lett 428, 193-9.
    18. Lerche, M. H., Kragelund, B. B., Bech, L. M., and Poulsen, F. M. (1997) Barley lipid-transfer protein complexed with palmitoyl CoA: the structure reveals a hydrophobic binding site that can expand to fit both large and small lipid-like ligands, Structure 5, 291-306.
    19. Zachowski, A., Guerbette, F., Grosbois, M., Jolliot-Croquin, A., and Kader, J. C. (1998) Characterisation of acyl binding by a plant lipid-transfer protein, Eur J Biochem 257, 443-8.
    20. Douliez J. P., Michon T, Marion D. (2000) Steady-state tyrosine fluorescence to study the lipid binding properties of a wheat non-specific lipid transfer protein (nsLTP1). Biochim Biophys Acta 1467, 65-72.
    21. Lai, Y.T., Cheng, C.S., Liu, Y.N., Liu Y.J. and Lyu, P. C. (2008) Effects of ligand binding on the dynamics of rice nonspecific lipid transfer protein 1 : A model from molecular simulations. Proteins 72, 1189-98.
    22. Lin, K. F., Liu, Y. N., Hsu, S. T., Samuel, D., Cheng, C. S., Bonvin, A. M., and Lyu, P. C. (2005) Characterization and structural analyses of nonspecific lipid transfer protein 1 from mung bean. Biochemistry 44, 5703-5712
    23. Samuel, D., Liu, Y. J., Cheng, C. S., and Lyu, P. C. (2002) Solution structure of plant nonspecific lipid transfer protein-2 from rice (Oryza sativa). J Biol Chem 277, 35267-35273
    24. Liu, Y. J., Samuel, D., Lin, C. H., and Lyu, P. C. (2002) Purification and characterization of novel 7-kDa non-specific lipid transfer protein-2 from rice (Oryza sativa), Biochem. Biophys. Res. Commun. 294, 535-40.
    25. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C. (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150, 76-85.
    26. Greenfield, N., and Fasman, G.D. (1969) Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8, 4108-16.
    27. Johnson, W.C., Jr. (1990) Protein secondary structure and circular dichroism : a practical guide. Proteins 7, 205-14.
    28. Van Paridon, P. A., Gadella, T. W., Jr., Somerharju, P. J., and Wirtz, K. W. (1988) Properties of the binding site for the sn-1 and sn-2 acyl chains on the phosphatidylinositol transfer protein from bovine brain. Biochemistry 27, 6028-14.
    29. Douliez J. P., Michon T, Marion D. (2000) Steady-state tyrosine fluorescence to study the lipid binding properties of a wheat non-specific lipid transfer protein (nsLTP1). Biochim Biophys Acta 1467, 65-72.
    30. Guerbette F, Grosbois M, Jolliot-Croquin A, Kader J. C., Zachowski A. (1999) Comparison of lipid binding and transfer properties of two lipid transfer proteins from plants. Biochemistry 38, 14131-7.
    31. Goddard, T. D., and Kneller, D. G. (1999) SPARKY, 3rd ed., University of California, Snn Francisco.
    32. Smith, G. R., and Sternberg, M. J. (2002) Prediction of protein-protein interactions by docking methods. Curr Opin Struct Biol 12, 28-35.
    33. Katchalski-Katzir, E., Shariv, I., Eisenstein, M., Friesem, A. A., Aflalo, C., and Vakser, I. A. (1992) Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc Natl Acad Sci U S A 89, 2195-2199.
    34. Wallace, A.C., Laskowski, R.A., and Thornton, J.M. (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8, 127-34.
    35. Santoro, M. M., and Bolen, D. W. (1988) Unfloding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using gifferent denaturants. Biochemistry 27, 8063-8.
    36. Garcia-Garrido, J. M., Menossi, M., Puigdomenech, P., Martinez-Izquierdo, J. A., and Delseny, M. (1998) Characterization of a gene encoding an abscisic acid-inducible type-2 lipid transfer protein from rice. FEBS Lett 428, 193-9.
    37. Wallace, A.C., Laskowski, R.A., and Thornton, J.M. (1995). LIGPLOT: A program to generate schematic diagrams of protein–ligand interactions. Protein. Eng. 8, 127–134.
    38. Yukako Hihara, Chikage Hara and Hirofumi Uchimiya (1996) Isolation and characterization of two cDNA clones for mRNAs that are abundantly expressed in immature anthers of rice (Oryza sativa L.) Plant Molecular Biology 30, 1181-1193.
    39. Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gad penalties and weight matrix choice. Nucleic Acid Res 22, 4673-80.
    40. Bak, Søren (1997) CYP703 Is an Ancient Cytochrome P450 in Land Plants Catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen. Plant Cell 19, 1473-1487.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE