簡易檢索 / 詳目顯示

研究生: 陳季汎
Chen,Chi-Fan
論文名稱: 利用自組裝分子膜操控膠體粒子並研究其表面電漿光學特性
Study on Plasmonic Properties of Colloidal Nanoparticles Controlled by Self-Assembled Monolayers
指導教授: 果尚志
Gwo,Shangjr
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2008
畢業學年度: 97
語文別: 英文
論文頁數: 108
中文關鍵詞: 表面電漿奈米粒子
外文關鍵詞: surface plasmon, nanoparticles
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是將金奈米粒子視為人造原子堆疊成奈米粒子超晶格並控制其週期常數使其具有可調變之表面電漿光學特性。另外,再控制其整體排列以製作具有高價值之表面電漿光學元件。我們成功地利用粒子及粒子與溶液間的毛細力將具硫醇包覆的金奈米粒子排列成緊密堆積(close packed)的金奈米粒子超晶格。並利用不同鏈長的硫醇分子(C12-C18)控制此超晶格的周期常數。其中,金奈米粒子與粒子間的間距可被精確地調控從3.4 nm 至2.3 nm。此首創的方法驗證了近場光的耦合,而1.1 nm 的改變造成了表面電漿共振從575 nm 至607 nm (32 nm的偏移量)。然而,需要大範圍控制金奈米粒子實屬不易,因此,在過去幾年內我們開發了幾種圖形化控制奈米粒子的方法其中:
    電化學轉換壓印法(Microcontact electrochemical conversion)之技術。其在兩板間施以一偏壓時,可將母板的圖形透過電化學氧化轉移至具有分子膜之另一基板上。我們利用此方法,可不需要利用任何光阻製作小至300 nm 的圖形,具有超高解析度,且圖形範圍可達數百微米。之後,再利用靜電力吸附將金膠體粒子吸附在圖形化的分子膜基板上(分子膜與奈米粒子均帶電性)而形成圖形化的奈米粒子排列。另一種方式是利用vacuum ultraviolent (VUV) 微影也可製作出不同親疏水性的分子膜圖案。再藉由毛細力作用也可以圖形化地控制氧化矽球規則排列在基板上。
    另外在分子膜與金膠體粒子的物性研究上,我們使用APTMS 分子膜其末端官能機為NH3+並利用掃描電位顯微鏡量得其表面電位~130 mV 為具正電性。另一方面利用光電子能譜量測金奈米粒子也證實奈米粒子帶負電性。


    In this dissertation, we regard the gold nanoparticles as “artificial atoms"to arrange the gold nanoparticle superlattices and tune the lattice constants for
    polasmonic properties. Therefore, via capillary force, we can use the thiolated gold nanoparticles to form the close packed gold nanoparticle superlattices. Moreover, via
    the different chain lengths of alkanethiols (C12-C18), the lattice constants can be controlled. Among different gold nanoparticle superlattices, the interparticle gaps are
    precisely controlled form 3.4 nm to 2.3 nm. The 1.1 nm variation results in the shift of the surface plasmon resonance from 575 nm to 607 nm (with 32 nm red shift) and
    experimentally confirms the near filed coupling effect. However, it is difficult to massively control gold nanoparticles, thus, in the past few years, we have developed several kinds of approaches for patterned controlling nanoparticles:
    One of them is Microcontact Electrochemical Conversion approach. Applied bias between stamp and sample and via electrochemical conversion, the pattern of stamp can transfer to the sample, which was preassembled on self-assembled monolayers. This approach provides a high resolution patterns ~300 nm and functional range can
    exceed to hundreds of micrometers. Afterward, via electrostatic force, colloidal gold nanoparticles can absorb on the patterned SAMs to form patterned nanoparticle
    configuration. The other approach takes advantage of vacuum ultraviolent lithography to fabricate hdrophilic/hydrophobic SAM patterns. Via capillary force, the silica microspheres can patternedly arranged on substrate with close packed configuration.
    In addition, we also study physical characteristics of gold colloid and SAMs, especially for APTMS. With terminated group of NH3+, APTMS monolayer is investigated by Kevin force microscopy with a surface potential ~130 eV of positive charges. On the other hand, the colloidal gold nanoparticles are confirmed with negative charges by photoelectron spectrum measurement.

    Contents Chapter 1 Introduction 1 1.1 outline 5 Chapter 2 Literature and Theoretical Reviews 7 2.1 History of noble metallic nanoparticles 7 2.2 Localized surface plasmon 9 Chapter 3 Synthesis of Gold Colloid and Preparation of Self-Assembled Monolayer Substrate 19 3.1 Aqueous colloidal gold nanoparticles 19 3.2 Preparation of self assembled monolayer substrate 22 3.3 Evidence of electrostatic attraction between nanoparticles and SAMs 25 3.3.1 Kelvin force microscopy (KFM) measurement 26 3.3.2 Photoelectron spectroscopy (PES) measurement 30 Chapter 4 Manipulation of Charged Colloidal Nanoparticles with Electrostatic Nanopatterning : Microcontact Electrochemical Conversion 43 4.1 Introduction 43 4.2 Microcontact electrochemical conversion (MEC) process 46 4.2.1 Motivation 4.2.2 Stamp fabrication 4.2.3 Aminosilane monolayers and colloids 4.2.4 Procedure for Microcontact Electrochemical Conversion (MEC) 4.3 Results of MEC process 51 4.3.1 Large area replication 4.3.2 Small structure transfer 4.3.3 Mechanism of the MEC process for patterning 3-aminopropyltrimethoxysilane (APTMS) SAMs 4.3.4 Selective adsorption of gold nanoparticles on the site-controlled APTMS array Chapter 5 Tunable Plasmonic Response from Alkanethiolate-Stabilized Gold Nanoparticle Superlattices: Evidence of Near-Field Coupling 55 5.1 Introduction 55 5.2 Preparation of thiolated gold nanoparticles 57 5.2.1 Transfer of gold colloids from aqueous phase to organic phase 5.3 Self-assembly of gold nanoparticle superlattices 60 5.4 Optical measurements 72 5.5 Self-assembled of small gold nanoparticle superlattices 82 Chapter 6 Manipulation of Colloidal Particles with Capillary Force: Patternedly Assembling Particle Superlattices 85 6.1 Introduction 85 6.2 Manipulation of silica microspheres by selective self-assembled onto patterned SAMs 87 Chapter 7 Conclusions 93 Reference 97

    Reference:
    1. F. Caruso, “Colloids and Colloid Assemblies”, Wiley-VCH , (2003)
    2. Yurii A. Vlasov, Xiang-Zheng Bo, James C. Sturm and David J. Norris, Nature,
    414, 289-293, (2001)
    3. P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, Chem. Mater., 11,
    2132-2140, (1999)
    4. A. Moores, F. Goettmann, New Journal of Chemistry, 30, 1121-1132, (2006)
    5. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H.
    A. Atwater, Advanced Materials, 13, 1501-1505, (2001)
    6. S. A. Maier, “Plasmonics: Fundamentals and Applications”, Springer, (2007)
    7. K. G. Tomas, S. Barazzouk, B. I. Ipe, S. T. S. Joseph, and P. V. Kamat, J. Phys.
    Chem. B, 108, 13066-13068, (2004)
    8. Jie Zheng, Caiwei Zhang, and Robert M. Dickson, Physical Review Letters, 93,
    077402, (2004)
    9. S. Pathak and P. M. Dentinger, Langmuir, 19, 1948-1950, (2003)
    10. W. Huang, W. Qian, and M. A. Ei-Sayed, J. Phys. Chem. B, 109, 18881-18888,
    (2005)
    11. J. Hu, Y. Zhang, H. Gao, M. Li, and U. Hartmann, Nano letters, 2, 55-57, (2002)
    12. T. Qiu, X. L. Wu, and Y. C. Cheng, G. G. Siu, and P. K. Chu, Applied Physical
    Letters, 88, 143111 (2006)
    13. Y. Yang, S. Matsubara, M. Nogami, J. Shi, and W. Huang, Nanotechnology, 17,
    2821-2827, (2006)
    14. S. Hoeppener, R. Maoz, and J. Sagiv, advanced materials, 18, 1286-1290, (2006)
    15. M. C. Daniel and D. Astruc, Chem. Rev., 104, 293, (2004)
    16. S. A. Maier, H. A. Atwater, Journal of Applied Phyiscs, 98, 011101 (2005)
    17. K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, J. Phys. Chem. B, 107,
    98
    668-677 (2003)
    18. (J. D. Jackson,”Classical Electrodynamics”, John Wiley & Sons Inc., (1998)
    19. S. A. Maier, “Plasmonics: fundamentals and applications”, Springer, (2007)
    20. D. J. Griffiths, “Introduction to electrodynamics”, Prentice-Hall International,
    (1999)
    21. C. F. Bohren, D. R. Huffman, “Absorption and scattering of light by small
    particles” John Wiley & Sons Inc (1983)
    22. N. Fang, H. Lee, C. Sun, X. Zhang, Science, 308, 534, (2005)
    23. Paul Mulvaney, Langmuir, 12, 788, (1996)
    24. P. B. Johnson and R. W. Christy, Phys. Rev. B, 6, 4370, (1972)
    25. P. Mulvaney, MRS Bull. 26(12), 1009 (2001)
    26. J. Turkevich, P. C. Stevenson, J. Hillier, Discuss. Faraday Soc., 11, 55, (1951).
    27. J. W. Slot, and H. J. Geuze, Eur. J. of Cell Biol., 38, 87-93 (1985).
    28. A. Gole, S. R. Sainkar, and M. Sastry, Chemistry of Materials 12, 1234-1239
    (2000).
    29. H. X. He, H. Zhang, Q. G. Li, T. Zhu, S. F. Y. Li, and Z. F. Liu, Langmuir 16,
    3846-3851 (2000).
    30. H. Zhang, H. X. He, J. Wang, T. Mu, and Z. F. Liu, Applied Physics a-Materials
    Science & Processing 66, S269-S271 (1998).
    31. D. F. S. Petri, G. Wenz, P. Schunk, and T. Schimmel, Langmuir 15, 4520-4523
    (1999).
    32. A. F. Wang, H. Y. Tang, T. Cao, S. O. Salley, and K. Y. S. Ng, Journal of Colloid
    and Interface Science 291, 438-447 (2005).
    33. Tzeng, S.-D.; Lin, M.-H.; Gwo, S., unpublished data.
    34. A. Kikukawa, S. Hosaka, and R. Imura, Applied Physics Letters 66, 3510-3512
    (1995).
    99
    35. K. M. Jones, P. Visconti, F. Yun, A. A. Baski, and H. Morkoc, Applied Physics
    Letters 78, 2497-2499 (2001).
    36. B. J. Rodriguez, W. C. Yang, R. J. Nemanich, and A. Gruverman, Applied Physics
    Letters 86 (2005).
    37. K. Hayashi, N. Saito, H. Sugimura, O. Takai, and N. Nakagiri, Langmuir 18,
    7469-7472 (2002).
    38. H. Sugimura, K. Hayashi, N. Saito, N. Nakagiri, and O. Takai, Applied Surface
    Science 188, 403-410 (2002).
    39. H. Shinoda, and N. Mutsukura, Diamond and Related Materials 11, 896-900
    (2002).
    40. Y. K. Kim, H. S. Lee, H. W. Yeom, D. Y. Ryoo, S. B. Huh, and J. G. Lee, Physical
    Review B 70 (2004).
    41. K. Bierbaum, M. Kinzler, C. Woll, M. Grunze, G. Hahner, S. Heid, and F.
    Effenberger, Langmuir 11, 512-518 (1995).
    42. P. Harder, K. Bierbaum, C. Woell, M. Grunze, S. Heid, and F. Effenberger,
    Langmuir 13, 445-454 (1997).
    43. K. L. Purvis, G. Lu, J. Schwartz, and S. L. Bernasek, Journal of the American
    Chemical Society 122, 1808-1809 (2000).
    44. K. A. Rickert, A. B. Ellis, F. J. Himpsel, H. Lu, W. Schaff, J. M. Redwing, F.
    Dwikusuma, and T. F. Kuech, Applied Physics Letters 82, 3254-3256 (2003).
    45. G. K. Wertheim, S. B. Dicenzo, and S. E. Youngquist, Physical Review Letters 51,
    2310-2313 (1983).
    46. A. N. Shipway, E. Katz, and I. Willner, Chemphyschem 1, 18-52 (2000).
    47. Caruso, F., Ed, "Colloids and Colloidal Assemblies", Wiley-VCH: Weinheim,
    Germany, (2004)
    48. R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P.
    100
    Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J.
    Natan, Science 267, 1629-1632 (1995).
    49. T. Okamoto, I. Yamaguchi, and T. Kobayashi, Optics Letters, 25, 372-374 (2000).
    50. L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan,
    and C. D. Keating, Journal of the American Chemical Society, 122, 9071-9077
    (2000).
    51. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature, 424, 824-830 (2003).
    52. S. A. Maier, and H. A. Atwater, Journal of Applied Physics, 98, (2005).
    53. S. D. Tzeng, K. J. Lin, J. C. Hu, L. J. Chen, and S. Gwo, Advanced Materials, 18,
    1147-+ (2006).
    54. J. Tien, A. Terfort, and G. M. Whitesides, "Microfabrication through electrostatic
    self-assembly," Langmuir, 13, 5349-5355 (1997).
    55. Aizenberg, J.; Braun, P. V.; Wiltzius, P. Phys. Rev. Lett., 84, 2997-3000 (2000).
    56. K. M. Chen, X. P. Jiang, L. C. Kimerling, and P. T. Hammond, Langmuir, 16,
    7825-7834 (2000).
    57. H. O. Jacobs, and G. M. Whitesides, Science, 291, 1763-1766 (2001).
    58. Y. N. Xia, and G. M. Whitesides, Angewandte Chemie-International Edition, 37,
    551-575 (1998).
    59. B. D. Gates, Q. B. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides,
    Chemical Reviews, 105, 1171-1196 (2005).
    60. R. D. Piner, J. Zhu, F. Xu, S. H. Hong, and C. A. Mirkin, Science, 283, 661-663
    (1999).
    61. Sheehan, P. E.; Whitman, L. J. Phys. Rev. Lett., 88, 156104, (2002).
    62. B. L. Weeks, A. Noy, A. E. Miller, and J. J. De Yoreo, Physical Review Letters, 88
    (2002).
    63. J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, and J. Bennett,
    101
    Applied Physics Letters, 56, 2001-2003 (1990).
    64. P. Avouris, T. Hertel, and R. Martel, Applied Physics Letters, 71, 285-287 (1997).
    65. M. Calleja, and R. Garcia, Applied Physics Letters, 76, 3427-3429 (2000).
    66. S. Gwo, C. L. Yeh, P. F. Chen, Y. C. Chou, T. T. Chen, T. S. Chao, S. F. Hu, and T.
    Y. Huang, Applied Physics Letters, 74, 1090-1092 (1999).
    67. F. S. S. Chien, J. W. Chang, S. W. Lin, Y. C. Chou, T. T. Chen, S. Gwo, T. S. Chao,
    and W. F. Hsieh, Applied Physics Letters, 76, 360-362 (2000).
    68. H. Sugimura, and N. Nakagiri, Langmuir, 11, 3623-3625 (1995).
    69. H. Sugimura, T. Hanji, K. Hayashi, and O. Takai, Advanced Materials, 14, 524-+
    (2002).
    70. R. Maoz, S. R. Cohen, and J. Sagiv, Advanced Materials, 11, 55-61 (1999).
    71. R. Maoz, E. Frydman, S. R. Cohen, and J. Sagiv, Advanced Materials, 12, 725-+
    (2000).
    72. H. Sugimura, Japanese Journal of Applied Physics Part 1-Regular Papers Short
    Notes & Review Papers, 43, 4477-4481 (2004).
    73. M. Tello, R. Garcia, J. A. Martin-Gago, N. F. Martinez, M. S. Martin-Gonzalez, L.
    Aballe, A. Baranov, and L. Gregoratti, Advanced Materials, 17, 1480-1483 (2005).
    74. H. Sugimura, and N. Nakagiri, Journal of the American Chemical Society, 119,
    9226-9229 (1997).
    75. Hoeppener, S; Maoz, R; Cohen, S. R.; Chi, L.; Fuchs, H.; Sagiv, J. Adv. Mater., 14,
    1036-1041, (2002).
    76. Y. Masuda, M. Itoh, T. Yonezawa, and K. Koumoto, Langmuir, 18, 4155-4159
    (2002).
    77. Q. G. Li, J. W. Zheng, and Z. F. Liu, Langmuir, 19, 166-171 (2003).
    78. D. Wouters, and U. S. Schubert, Langmuir, 19, 9033-9038 (2003).
    79. X. Lin, X. Zhu, J. Zhang, T. Zhu, M. Liu, L. Tong, Z. Liu, J. Phys. Chem. B, 109,
    102
    2657-2665, (2005)
    80. E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S. C. Minne, T.
    Hunt, and C. F. Quate, Applied Physics Letters, 75, 3566-3568 (1999).
    81. F. S. S. Chien, Y. C. Chou, T. T. Chen, W. F. Hsieh, T. S. Chao, and S. Gwo,
    Journal of Applied Physics, 89, 2465-2472 (2001).
    82. D. Wouters, R. Willems, S. Hoeppener, C. F. J. Flipse, and U. S. Schubert,
    Advanced Functional Materials, 15, 938-944 (2005).
    83. M. L. Yang, Z. K. Zheng, Y. Q. Liu, and B. L. Zhang, Journal of Physical
    Chemistry B, 110, 10365-10373 (2006).
    84. M. Cavallini, P. Mei, F. Biscarini, and R. Garcia, Applied Physics Letters, 83,
    5286-5288 (2003).
    85. A. Yokoo, Journal of Vacuum Science & Technology B, 21, 2966-2969 (2003).
    86. N. Farkas, J. R. Comer, G. Zhang, E. A. Evans, R. D. Ramsier, S. Wight, and J. A.
    Dagata, Applied Physics Letters, 85, 5691-5693 (2004).
    87. H. X. He, H. Zhang, Q. G. Li, T. Zhu, S. F. Y. Li, Z.-F. Liu, Langmuir, 16,
    3946-3851, (2000).
    88. H. Sugimura, T. Hanji, K. Hayashi, and O. Takai, Ultramicroscopy, 91, 221-226
    (2002).
    89. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, Journal of Physical
    Chemistry B 107, 668-677 (2003).
    90. S. Link, and M. A. El-Sayed, Journal of Physical Chemistry B 103, 4212-4217
    (1999).
    91. S. Underwood, and P. Mulvaney, Langmuir 10, 3427-3430 (1994).
    92. M. M. Alvarez, J. T. Khoury, T. G. Schaaff, M. N. Shafigullin, I. Vezmar, and R. L.
    Whetten, Journal of Physical Chemistry B 101, 3706-3712 (1997).
    93. T. Ung, L. M. Liz-Marzan, and P. Mulvaney, Journal of Physical Chemistry B 105,
    103
    3441-3452 (2001).
    94. S. Malynych, and G. Chumanov, Journal of the American Chemical Society 125,
    2896-2898 (2003).
    95. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R.
    Aussenegg, Optics Communications 220, 137-141 (2003).
    96. K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, Nano
    Letters 3, 1087-1090 (2003).
    97. L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Kall, S. L. Zou, and G.
    C. Schatz, Journal of Physical Chemistry B 109, 1079-1087 (2005).
    98. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A.
    G. Requicha, Nature Materials, 2, 229-232 (2003).
    99. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824-830 (2003).
    100. C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L.
    Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, Journal of Physical Chemistry B
    107, 7337-7342 (2003).
    101. S. A. Maier, and H. A. Atwater, Journal of Applied Physics, 98, 011101, (2005).
    102. E. Ozbay, Science, 311, 189-193 (2006).
    103. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner,
    and F. R. Aussenegg, Physical Review Letters 84, 4721-4724 (2000).
    104. L. L. Zhao, K. L. Kelly, and G. C. Schatz, Journal of Physical Chemistry B 107,
    7343-7350 (2003).
    105. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R.
    Aussenegg, and J. R. Krenn, Physical Review Letters 95, - (2005).
    106. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, Journal of the
    Chemical Society-Chemical Communications, 801-802 (1994).
    107. N. R. Jana, and X. G. Peng, Journal of the American Chemical Society 125,
    104
    14280-14281 (2003).
    108. S. D. Tzeng, K. J. Lin, J. C. Hu, L. J. Chen, and S. Gwo, Advanced Materials 18,
    1147-+ (2006).
    109. W. L. Cheng, and E. Wang, Journal of Physical Chemistry B 108, 24-26 (2004).
    110. J. E. Martin, J. P. Wilcoxon, J. Odinek, and P. Provencio, Journal of Physical
    Chemistry B 104, 9475-9486 (2000).
    111. J. Fink, C. J. Kiely, D. Bethell, and D. J. Schiffrin, Chemistry of Materials 10,
    922-926 (1998).
    112. L. Motte, and M. P. Pileni, Journal of Physical Chemistry B 102, 4104-4109
    (1998).
    113. C. D. Bain, E. B. Troughton, Y. T. Tao, J. Evall, G. M. Whitesides, and R. G.
    Nuzzo, Journal of the American Chemical Society 111, 321-335 (1989).
    114. A. Badia, L. Cuccia, L. Demers, F. Morin, and R. B. Lennox, Journal of the
    American Chemical Society 119, 2682-2692 (1997).
    115. A. Badia, S. Singh, L. Demers, L. Cuccia, G. R. Brown, and R. B. Lennox,
    Chemistry-a European Journal 2, 359-363 (1996).
    116. M. J. Hostetler, J. J. Stokes, and R. W. Murray, Langmuir 12, 3604-3612 (1996).
    117. http://aldrich.com
    118. P. K. Jain, W. Y. Huang, and M. A. El-Sayed, Nano Letters 7, 2080-2088 (2007).
    119. Stefan A. Maier, Pieter G. Kik, and Harry A. Atwater, Applied Physics Letters,
    81, 1714-1716, (2002)
    120. Stefan A. Maier, Pieter G. Kik, and Harry A. Atwater, Physical Review B, 67,
    205402, (2003)
    121. X. M. Lin, H. M. Jaeger, C. M. Sorensen, and K. J. Klabunde, Journal of
    Physical Chemistry B 105, 3353-3357 (2001).
    122. T. P. Bigioni, X. M. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten, and H. M.
    105
    Jaeger, Nature Materials 5, 265-270 (2006).
    123. Yurii A. Vlasov, Xiang-Zheng Bo, James C. Sturm and David J. Norris, Nature,
    414, 289-293, (2001)
    124. C.-F. Chen, S.-D. Tzeng, H.-Y. Chen, K.-J. Lin, and S. Gwo, J. Am. Chem. Soc.,
    130, 824-826, (2008).
    125. B. P. Rand, P. Peumans, S. R. Forrest, J. Appl. Phys., 96, 7519, (2004)
    126. Haes, A. J.; Hall, W. P.; Chang, L.; Klein, W. L.; Van Duyne, R. P. Nano Lett., 4,
    1029-1034, (2004).
    127. Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. J. Am. Chem. Soc., 128,
    2115-2120, (2006).
    128. Jie Zheng, Caiwei Zhang, and Robert M. Dickson, Physical Review Letters, 93,
    077402, (2004)
    129. W. Huang, W. Qian, and M. A. EI-Sayed, J. Phys. Chem. B, 109, 18881-18888,
    (2005)
    130. Y. Yang, S. Matsubara, M. Nogami, J. Shi, and W. Huang, Nanotechnology, 17,
    2821-2827, (2006)
    131. A. Tao, P. Sinsermsuksakul, and P. Yang, Nature Nanotechnology, 2, 435-440,
    (2007)
    132. S. D. Tzeng, K. J. Lin, J. C. Hu, L. J. Chen, S. Gwo, Advanced Materials, 18,
    1147-1151, (2006)
    133. C. Jin, M. A. McLachlan, D. W. McComb, R. M. De La Rue, and N. P.
    Johnson, Nano Letters, 5, 2646-2650, (2005)
    134. Y. Yin and Y. Xia, Advanced Materials, 14, 605-608, (2002)
    135. Y. Yin, Y. Lu, B. Gates, and Y. Xia, Journal of the American Chemical Society,
    123, 8713-8729, (2001)
    136. Y. Xia, Y. Yin, Y Lu, and J. McLellan, Advanced Functional Materials, 13,
    106
    907-918, (2003)
    137. J. Y. Cheng, A. M. Mayes and C. A. Ross, Nature Materials, 3, 823-828 (2004)
    138. N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K.
    Nagayama, Nature, 361, 26, (1993)
    139. N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K.
    Nagayama, Langmuir, 8, 3183-3190, (1992)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE