簡易檢索 / 詳目顯示

研究生: 黃靜蓮
Huang, Ching Lien
論文名稱: 馬氏田口系統-兩階段最佳化、類神經網路演算法在動態環境資料探勘之應用
Modeling a dynamic design system using the Mahalanobis Taguchi system - two steps optimal based neural network
指導教授: 蘇哲平
Su, Jack C. P.
許總欣
Hsu. Tsung -Shin
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 65
中文關鍵詞: 馬氏田口系統資料挖掘動態系統設計兩階段最佳化類神經網路演算法
外文關鍵詞: Mahalanobis -Taguchi System, Data mining, dynamic system design, two steps optimal algorithm, neural network
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係以製造業產品/檢驗系統設計為例,來進行關鍵功能屬性與參數屬性萃取之資料挖掘分析之探討,以期以新的產品/檢驗系統模式來進行相關活動。
    由於,傳統產品/檢驗系統之設計,大都建基於產品功能/檢驗屬性之設計,並未對關鍵功能/檢驗參數屬性來進行分析與萃取,以達穩健設計為目標。另外,當產品/檢驗系統模式一旦建立後,在動態環境下,此一模式是否適用的問題。因此,本研究回顧了相關產品設計、資料挖掘等相關文獻進行探討後,提出一個動態產品/檢驗系統參數設計的演算法:馬氏田口系統-兩階段最佳化以及類神經網路演算法-來解決動態環境資料挖掘系統設計模式建立問題。其中,馬氏田口系統演算法是田口先生所發展出來,解決模式建立問題;兩階段最佳化是田口所提出來,解決不同時段之模式建構問題;類神經網路於1982年被霍普菲爾(Hopfield)提出來處理輸入/輸出之間的問題,後漸漸亦用於動態環境下之輸入/輸出問題之模式建構。因此,此演算法係整合了馬氏田口系統、田口之兩階段最佳化、以及類神經網路等演算法,來進行動態環境下產品/系統參數選擇與設計之演算法。其中,馬氏田口系統演算法有別於傳統演算法之參數設計,而是對關鍵參數萃取;兩階段最佳化與類神經網路則是驗證此動態模式是否適當。透過研究驗證,馬氏田口系統可以有效地應用於產品/系統參數設計與選擇等之模式建立;而兩階段最佳化與類神經網路演算法可以成功且有效地運用在動態環境下,資料之探勘與模式建立上。
    最後,藉由信賴水準與個案驗證之實驗發現,馬氏田口系統-兩階段最佳化以及類神經網路演算法,可以很容易且有效地解決動態模式建立問題。


    This work presents a novel algorithm, the MTS-TSO based Neural Network (NN) algorithm, which combines the Mahalanobis Taguchi System (MTS) with the Two-Step Optimal (TSO) method for parameter selections which are adjusted under a dynamic environment for product parameter design.
    The utility of the algorithm is assessed in two dimensions-the MTS shows how individual product parameter dimensions are selected; and, the TSO-NN links parameters selection decisions across two different times and it can be used to focus on dynamic system design (DSD) and to identify product architecture dimensions that are critical for a dynamic design system strategy.
    The MTS which can easily solve product parameter design problems and shows it’s computationally efficient in the previous works. Additionally, the TSO algorithm is a simple and efficient means of constructing a dynamic design system, which is verified by the neural network algorithm from this work, and the neural network is already successfully applied in dynamic system of the past studies.
    Based on the main aims and verifies of this work, we conclude that the MTS-TSO based neural network algorithm can be applied successfully to dynamic environments for solving product design problems.

    摘 要 ……………………………………………………………….….. ….. i Abstract ……………………………………………………………….….. iii 致 謝 ……………………………………………………………….….. ….. v 目 錄 …………………………………………………..…………………… vii 圖目錄…………………………………………………………………. ……. xi 表目錄…………………………………………………………………. ……. xii 章 節 第1章緒論…………………………………………….………. ……. ….. 1 1.1研究背景 …………………………………. …………….... 1 1.2研究目的………………………………………….. …….. …... 4 1.3研究執行步驟與架構…………………………………….. …... 5 1.3.1研究執行步驟 ………………………….. …….. …... 6 1.3.2研究架構………………………….. …………..….. …... 6 第2章 文獻回顧………………………………………….. ………... …... 9 2.1田口式品質工程…………………. …………………………... 9 2.1.1田口式品質工程之內涵………………….. …….. …... 9 2.1.2口式品質工程之績效評估指標………….. …….. …... 12 2.1.3田口式品質工程於實驗設計之應用…….. …….. …... 12 2.2資料挖掘 …………………... ……………………….... …... 13 2.2.1資料挖掘之意義………………………….. …….. …... 13 2.2.2資料挖掘之生命週期…………………….. …….. …... 13 2.2.3資料挖掘文獻回顧…………………….. .. …….. …... 14 2.2.4動態資料挖掘文獻……………………….. …….. …... 15 2.3馬氏田口系統演算法( Mahalanobis - Taguchi System; MTS)... 17 2.3.1馬氏田口系統演算法之定義………….. …….. ……….. 18 2.3.2馬氏田口系統演算法的文獻回顧……….. …….. …….. 25 2.4兩階段最佳化演算法(Two steps optimal algorithm)…….…… 25 2.5類神經網路 (Artificial neural network; ANN)…….…... 25 2.5.1類神經網路演算法………………………….. ….. ….. 26 2.5.2倒傳遞類神經網路(Backpropagation network, BPN)…. 27 2.5.3倒傳遞類神經網路在動態環境之應用…. …………… 27 第3章馬氏田口系統-兩階段最佳化以及類神經網路系統演算法…... 29 3.1建構馬氏田口系統之程序…………………………………… 29 3.1.1計算產品/系統資料屬性之參數值………….. ….. ….. 29 3.1.2計算馬氏距離與閾值決定…. …. …. …. …. …. …. …. 29 3.1.3計算訊號與雜音比 ( )值…. ………………. …. …. 29 3.2建構動態系統設計模式…. …. …. …. …. …. ….…. …. …. …. 30 3.2.1兩階段最佳化演算法(TSO) …. …. …. ….…. …. …. 30 3.2.2智慧型類神經網路演算法(ANN)……………………… 30 3.3馬氏田口系統-兩階段最佳化以及類神經網路演算法……. 30 3.3.1建構系統之衡量指標……………. ……………………. 31 3.3.2確認之衡量指標………………………….. ………… 31 3.3.3建構動態系統模式………………………….. ………… 32 第4章.系統驗證…………………………………………………………… 35 4.1馬氏田口系統模式之驗證 ………………. ……. 35 4.1.1建構系統之衡量指標 …….. ……. ……. ……. ……. 35 4.1.2確認系統之衡量指標 …………………….. ……….. 36 4.2馬氏田口系統模式之驗證…………………………. 39 4.2.1建構系統之衡量指標 …….. ……. ……. ……. ……. 39 4.2.2確認系統之衡量指標 …………………….. ……….. 40 4.3動態系統模式之驗證………………. ……. ……. ……. …. 42 4.3.1確認衡量指標……. . ………. …. …. …. …. …. …. …. 42 4.3.2田口系統之兩階段最佳化.. . …. …. …. …. …. …. … 43 4.3.3類神經網路演算法. …….. ……….. …….. …….. …… 45 4.3.4小結 …………………….. ……….. …….. …….. …… 47 4.4變更馬氏田口系統之實驗次數的模式確認…. ……. ……. … 49 4.4.1第一階段. ……. . ……. . . . . ……. . . . ……. . . . ……. . 49 4.4.2第二階段. ……. . ……. . . . . ……. . . . ……. . . . ……. . 50 4.5變更輸入順序模式確認…. ……. ……. ……. ……. …. … 51 4.5.1第一階段. ……. . ……. . . . . ……. . . . ……. . . . ……. . 51 4.5.2第二階段. ……. . ……. . . . . ……. . . . ……. . . . ……. . 52 4.6小結…. ……. ……. ……. ……. . ……. ……. ……. …… 53 第5章. 結論與未來研究方向…………………………………………… 54 5.1結論 …………. ……. ………. ……………. …………. ……… 54 5.1.1研究發現 …….. ……. ……. ……. ……. ……. ………. 54 5.1.2研究成果 ……………. ………………. ……. ……. 55 5.2未來研究方向. ……. ………. ……………. …………. ……… 56 5.2.1尋找較佳之演算法…. ……. ……. ……. ……. ………. 56 5.2.2尋找適用之領域…. ……. ……. ……. ……. ……… 56 參考文獻 . ……. ………. ……………. …………. ……………………. …… 58

    Aalst, W.M.P., Dongen, B.F., Herbst, J., Maruster, L., Schimm, G. and Weijters, A.J.M.M. (2003), Work on mining: A survey of issues and approaches, Data & Knowledge Engineering, Vol. 47, pp. 237–267.
    Ambrozic, T., and Turk, G. (2003), Prediction of subsidence due to underground mining byarti.cialne ural networks, Computers & Geosciences, Vol. 29, pp. 627–637.
    Balakrisnan, S. N., and Weil, R. D. (1996), Neurocontrol: A Literature Survey, Mathematical and Computer Modelling, Vol. 23, Issue: 1-2, January, pp. 101-117.
    Banker, R.D., Datar, S.M., Kekre, S., (1990), Mukhopadhyay, T., Cost of product and process complexity. In: Kaplan, R.S. (Ed.), Measures for Manufacturing Excellence, Harvard Business School Press, Boston, MA, pp.269–290.
    Bendoly, E. (2003), Theory and support for process frameworks of knowledge discovery and data mining from ERP systems, Information & Management, Vol. 40. pp. 639–647.
    Benner, M., Linnemann, A.R.,Jongen, W.M.F., and Folstar, P. (2003), Quality Function Deployment (QFD)—can it be used to develop food products?, Food Quality and Preference, Vol. 14, Issue: 4, June, pp. 327-339.
    Boothroyd, G., Dewhurst, P., Knight, W.A. (2002), Product Design for Manufacture and Assembly Marcel Dekker, New York.
    Cao, Y., Lim, E. P., and Ng, W. K. (2003), Data model for warehousing historical Web information, Information and Software Technology, Vol. 45, pp.315–334.
    Carpenter, G. A., and Grossberg, S.(1987), ART-2: Self-organization of stable category recognition codes for input patterns, Applied Optics, Vol. 26, pp. 4919-4930.
    Chang, A. S., and Leu, S.S. (2006), Data mining model for identifying project profitability variables, International Journal of Project Management, Vol.24, pp. 199–206.
    Chang, C. H., and Ding Z. K. (2005), Categorical data visualization and clustering using subjective factors, Data & Knowledge Engineering, Vol. 53, pp. 243–262.
    Chang, H. H., and Chen, Y.K.(2009), Neuro-Genetic Approach to Optimize Parameter Design of Dynamic Multi response Experiments, Applied Soft Computing, December, online.
    Chena, Y. L., Chianga, M. C. and Ko, M. T. (2003), Discovering time-interval sequential patterns in sequence databases, Expert Systems with Applications, Vol. 25, pp.343–354.
    Chen, L. H. (1997), Designing robust products with multiple quality characteristics, Computers & Operations Research, Vol. 24, Issue: 10, October, pp. 937-944.
    Chen, Y. L., Hsu, C. L. and Chou, S. C. (2003), Constructing a multi-valued and multi-labeled decision tree, Expert Systems with Applications, Vol. 25, pp.99–209.
    Chiang, H. L., Huang, C. E. and Lim, E. P. (2005), Linear correlation discovery in databases: a data mining approach, Data & Knowledge Engineering, Vol. 53, pp.311–337.
    Chun, S. H., and Park, Y. J., Dynamic adaptive ensemble case-based reasoning: application to stock market prediction, Expert Systems with Applications, 2005, Vol. 28: 435–443.
    Coenen, F., Leng, P. (2007), The effect of threshold values on association rule based classification accuracy, Data & Knowledge Engineering, Vol.60. pp. 345-360.
    Damle, C., and Yakcubm A., 2007, Flood prediction using Time Series Data Mining, Journal of Hydrology, Vol. 333, pp.305-316.

    Das, P., Datta, S. (2007), Exploring the effects of chemical composition in hot rolled steel product using Mahalanobis distance scale under Mahalanobis-Taguchi system, Computational Material Science, Vol. 38.pp. 671-677.
    Daskalaki, S., Kopanas, I., Goudara, M. and Avouris, N. (2003), Data mining for decision support on customer insolvency in telecommunications business, European Journal of Operational Research, Vol. 145, pp. 239–255.
    Diambr, L. (2008), Clustering gene expression by dynamics: A maximum entropy approach, Physica A, Vol. 387, pp.2187–2196.
    Dreyfus, S. E. (1990), Artificial neural networks, back propagation, and the Kelley Bryson gradient procedure, Journal of Guidance, Control, and Dymamics, Vol. 13(5),
    Dı´az, I., Domı, M., Cuadrado, A. A., and Fuertes, J. J. (2008), A new approach to exploratory analysis of system dynamics using SOM Applications to industrial processes, Expert Systems with Applications, Vol.34, pp.2953–2965.
    Durucan, S., Korre, A. and Gabriela, M. M. (2006), Mining life cycle modelling: a cradle-to-gate approach to environmental management in the minerals industry, Journal of Cleaner Production, Vol. 14, pp.1057~1070.
    Eulogio, P. I., and P Dowd. A. (2003), Testing for constant spatial mean using the global D-statistic, Computers & Geosciences, Vol. 29, pp.1057–1068.
    Fattori, M., Pedrazzi, G., and Turra, R. (2003), Text mining applied to patent
    mapping: a practical business case, World Patent Information, Vol. 25, pp. 35–342.
    Fleischer, M., Liker, J.K. (1997), Concurrent Engineering Effectiveness — Integrating Product Development Across Organizations, Hanser Gardner Publications, Cincinatti.
    Frawley, W., Piatetsky-Shapiro, G., and Matheus, C. (1992), Knowledge discovery in databases: an overview, AI Magazine, Vol.13, pp.213–228.
    Gambergera, D., Lavracb, N., and Krstacic G. (2003), Active subgroup mining: a case study in coronary heart disease risk group detection, Artificial Intelligence in Medicine, Vol. 28, pp.27–57.
    Ganesh, M., Han, E. H., and Kumar, V. (1996), Visual data mining: framework and algorithmic development, Department of Computer and Information Sciences, University of Minnesota, Minneapolis.
    Ghiassi, M., Saidane, H., and Zimbra, D. K. (2005), A dynamic artificial neural network model for forecasting time series events, International Journal of Forecasting, Vol. 21, pp.341– 362.
    Hamilton, H., Geng, J. L., Findlater, L. and Randall, D. J. (2006), Efficient spatio-temporal data mining with GenSpace graphs, Journal of Applied Logic, Vol. 4, pp.192–214.
    Hawick, K. A., Coddington, P.D., and James, H.A. (2003), Distributed frameworks and parallel algorithms for processing large-scale geographic data, Parallel Computing, Vol. 29, pp.1297–1333.
    Heinrichs, J. H., and Lim, J. S. (2003), Integrating web-based data mining tools with business models for knowledge management, Decision Support Systems, Vol. 35, pp. 103-112.
    Hopfield, J. J. (1982), Neural networks and physical systems with emergent collective computational abilities, In Proceedings National Academy of Science, April, Vol. 79, pp.2554-2558.
    Hopfield, J. J. (1984), Neuron with graded response have collective computational properties like those of two-state neurons, In Proceedings National Academy of Science, May, Vol. 81, pp.3088-3092.
    Hsua, P.L., Laia, bR., Chiu, C.C., and Hsu, C.I. (2003), The hybrid of association rule algorithms and genetic algorithms for tree induction: an example of predicting the student course performance, Expert Systems with Applications, Vol. 25, pp. 51–62.
    Hu, X. (2003), DB-H Reduction: A Data Preprocessing Algorithm for Data Mining Applications, Applied Mathematics Letters, Vol. 16, pp.889-895.
    Hu, X., and Cercone, N. (1999), Data mining via discretization and generalization, Knowledge and Information Systems, Vol.1 (l), pp.33-60.
    Huang, C. L., Hsu, T. S., and Liu, C. M.(2009), The Mahalanobis Taguchi system — Neural network algorithm for data-mining in dynamic environments, Expert Systems with Application, April, Vol.36, pp.5475-5480.
    Jenamani, M. P., Mohapatra, K.J., and Ghose, S. (2003), A stochastic model of e-customer behavior, Electronic Commerce Research and Applications, Vol. 2, pp.81–94.
    Jiang ,X. R., and Gruenwald, L. (2005), Microarray gene expression data association rules mining based on BSC-tree and FIS-tree, Data & Knowledge Engineering, Vol. 53, pp.3–29.
    Jiao, J. Zhang, Y., and Helander, M.(2006), A Kansei mining system for affective design, Expert Systems with Applications, Vol. 30, pp.658–673.
    Jiao, R.J., Huang, G.G.Q., and Tseng, M.M. (2004), Concurrent enterprising for mass customization, Concurrent Engineering: Research and Application, Vol. 12 (2), pp.83–88.
    Kaya, M., and Alhajj, R. (2005), Genetic algorithm based framework for mining fuzzy association rules, Fuzzy Sets and Systems, Vol. 152, pp.587–601.
    Keim, D. A., and Kriegel, H. P. (1994), Using visualization to support data mining of large existing databases, Proceedings of the IEEE Visualization ’93 Workshop, San Jose, CA, in: Lecture Notes in Computer Science, Vol. 871, Springer, Berlin, pp. 210–229.
    Keima, D. P., ansea, A. C., Sipsa, M., and Northb S. C. (2004), Pixel based visual data miningof geo-spatial data, Computers & Graphics, Vol. 28, pp.327–344.
    Kim, M. J., and Han, I. (2003), The discovery of experts’ decision rules from qualitative bankruptcy data using genetic algorithms, Expert Systems with Applications, Vol. 25, pp. 637–646.
    Kopanakis, I., and Theodoulidis, B. (2003), Visual data mining modeling techniques for the visualization of mining outcomes, Journal of Visual Languages and Computing, Vol.,14, pp. 543–589.
    Kostoff, R. N. (2003), Bilateral asymmetry prediction, Medical Hypotheses, Vol. 61(2), pp. 265–266.
    Kros, J. F., Lin, M., and Marvin, L. (2006), Brown, Effects of the neural network s-Sigmoid function on KDD in the presence of imprecise data, Computers & Operations Research, vol. 33, pp.3136–3149.
    Kuriakose, S., Mohan, K., and Shunmugam, M. S. (2003), Data mining applied to wire-EDM process, Journal of Materials Processing Technology, Vol. 142, pp.182–189.
    .Kuz´niar, K., Macia˛g, E., and Waszczyszyn, Z. (2005), Computation of response spectra from mining tremors using neural networks, Soil Dynamics and Earthquake Engineering, , Vol. 25: 331–339.
    Lai H. H., Yang, C. L., Chung, H. Y., and Chien, H. W., (2006), User-oriented design for the optimal combination on product design, Int. J. Production Economics, Vol.100, pp.253–267.
    Lasta, M., and Kandel, A. (2004), Discovering useful and understandable patterns in manufacturing data, Robotics and Autonomous Systems, Vol. 49, pp. 137–152.
    Lee, A. J.T., and Wang, Y.T. (2003), Efficient data mining for calling path patterns in GSM networks, Information Systems, Vol. 28, pp. 929–948.
    Li, Y., Ning, P., Wang, X. S., and Jajodia, S. (2003), Discovering calendar-based temporal association rules, Data & Knowledge Engineering, Vol. 44, pp.193–218.
    Liu, H., Setino, R., and ChiP (1996): Feature selection and discretization of numeric attributes, in Prod. of the 8th IEEE Tools on AI, Washington, DC, July 1995, pp. 388-391.
    Mahalanobis, P. C. (1927), Analysis of race mixture in Bengal. J. Proc. Asiatic Soc. of Bengal. 23:301-333.
    Malone, J., McGarry, K., and Bowerman, C. (2006), Automated trend analysis of proteomics data using an intelligent data mining architecture, Expert Systems with Applications, Vol. 30, pp.24–33.
    McCulloch, W. S., and Pitts, W. (1943), A logical calculus of the ideas immanent in nervous activity, Bulletin of Math. Biophysics, Vol. 5, pp. 115-133.
    McLachlan, G. J.(1992), Discriminant Analysis and Statistical Pattern Recognition, Wiley Interscience.
    Nasraoui, O., Rojas, C., and Cardona, C. (2006), A framework for mining evolving trends in Web data streams using dynamic learning and retrospective validation, Computer Networks, Vol. 50, pp.1488–1512.
    Nevins, J.L., Whitney, D.E. (1989), Concurrent Design of Products and Processes: A Strategy for the Next Generation in Manufacturing, McGraw-Hill, New York.
    Nicieza, C. G. M., Fernandez, I. A. A., and Vigil, A. E. A. (2005), The new three-dimensional subsidence influence function denoted by n–k–g, International Journal of Rock Mechanics & Mining Sciences, Vol. 42., pp.372–387.
    Nicholson, S. (2006), The basis for bibliomining: Frameworks for bringing together usage-based data mining and bibliometrics through data warehousing in digital library services, Information Processing and Management, Vol. 42, pp. 785–804.
    Parsons, O., and Carpenter, G. A. (2003), ARTMAP neural networks for information fusion and data mining: map production and target recognition methodologies, Neural Networks, Vol. 16, pp.1075–1089.
    Piramuthu, S. (2003), On learning to predict Web traffic, Decision Support Systems, Vol.35, pp.213– 229.
    Piramuthu, S. (2004), Evaluating feature selection methods for learning in data mining applications, European Journal of Operational Research, Vol. 156, pp.483–494.
    Romanowski, C. J. R. N.and Sudit, M. (2006), Data mining in an engineering design environment: OR applications from graph matching, Computers & Operations Research, Vol. 33, pp. 3150–3160.
    Rosenblatt, F.(1958), The Perceptron, a probabilistic model for information storage and organization in the brain, Psychology Review, Vol. 62, pp. 386-408.
    Runkler, T.A. and Bezdek, J.C. (2003), Web mining with relational clustering, International Journal of Approximate Reasoning, Vol., 32, pp. 217–236.
    Rupp, B. (2003), Maximum-likelihood crystallization, Journal of Structural Biology, Vol. 142, pp.162–169.
    Sebastian, K., Fixson. (2005), Product architecture assessment: a tool to link product, process, and supply chain design decisions, Journal of Operations Management, Vol.23, pp.345–369.
    Sheu, D. D., Chen, D.R.(2007), Backward design and cross-functional design management, Computers & Industrial Engineering, Vol.53, pp.1–16.
    Simpeon, P. K.(1990), artificial Neural Systems, Pergamon Press, Elmsford, NY.
    Sorensen, K. and Janssens, G. K. (2003), Data mining with genetic algorithms on binary trees, European Journal of Operational Research, vol. 151, pp. 253–264.
    Su, C. T. (2002), Quality Engineering, The Quality of Association R.O.C.
    Su, C. T.; Hsiao, Y. H. (2007), An evaluation of the robustness of MTS for imbalanced data, IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, Vol.19(10), pp.1321-1332.
    Sullivan, R., Timmermann, A. and H. White (2003), Forecast evaluation with shared data sets, International Journal of Forecasting, Vol. 19, pp. 217–227.
    Wang, C. Y., Tseng,S. S. and Hong, T. P. (2006), Flexible online association rule mining based on multidimensional pattern relations, Information Sciences, Vol. 176, pp.1752–1780.
    Wanga,Y., Lim E. P., and Hwang, S.Y. (2006), Efficient mining of group patterns from user movement data, Data & Knowledge Engineering, Vol. 57, pp. 240–282.
    Wang, Y. F. (2003), Mining stock price using fuzzy rough set system, Expert Systems with Applications, Vol. 24, pp.13–23.
    Widrow, B.(1987), Adaline and Madaline-1963, Plenary speech , In Proceedings IEEE International Conference on Neural Networks, San Diego, CA, June 23, Vol. 1, pp. 145-158.
    Yun, C. H., Chuang, K. T., and Chen, M. S. (2006), Adherence clustering: an efficient method for mining market-basket clusters, Information Systems, Vol. 31, pp.170–186.
    Zang, C., Friswell, M. I., Mottershead, J.E. (2005), A review of robust optimal design and its application in dynamics, Computers and Structures, Vol. 83, pp.315-326.
    http://en.wikipedia.org/wiki/Mahalanobis_distance
    http://www.informatica.com.
    http://www.ibm.com.
    http://www.elsevier.nl/locate/entcs/volume82.html

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE