研究生: |
陳鈺婷 Chen, Yu-Ting |
---|---|
論文名稱: |
利用化學浴沉積法成長氧化鋅薄膜製成高效率反結構有機太陽能電池 Highly Efficient Inverted Organic solar cells using chemical bath deposited ZnO as electron selective layer |
指導教授: |
洪勝富
Horng, Sheng-Fu |
口試委員: |
洪勝富
孟心飛 冉曉雯 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 反結構 、氧化鋅 、化學浴沉積法 、有機太陽能電池 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要將化學浴沉積法(Chemical Bath Deposition;CBD)應用於反式結構有機太陽能電池上,化學浴沉積法不但簡單環保,並且符合未來有機太陽能電池可撓性與大面積的發展趨勢。本研究使用P3HT(Poly (3-hexylthiophene-2,5-diyl))混合PCBM (1-(3-methoxycarbonyl) propyl-1-phenyl[6,6]-C61)製成塊材異質接面作為主動層;因為氧化鋅抗水氧能力強,並且具有良好的載子傳輸能力,故電子傳輸層(Electron Selective Layer)選用氧化鋅(Zinc oxide;ZnO)薄膜。過去在有機太陽能電池的領域中,沉積氧化鋅薄膜的相關研究有使用原子層沉積方式(atomic layer deposition;ALD)、旋轉塗佈方式(spin coating) 、噴墨塗佈(spray coating)或者sol-gel方式等等,本實驗則是應用化學浴沉積法製作表面平整及組織緻密之奈米級ZnO電子傳輸層,元件結構為ITO/ZnO/P3HT:PCBM/PEDOT/Ag的反式有機太陽能電池。
實驗上先討論不同厚度的CBD-ZnO薄膜對元件效率的影響,以80nm的ZnO薄膜經過高溫退火後的最佳元件可以達到3.93%的轉換效率,之後再透過持續照光的方式,進一步讓元件最高效率達到4.61%。接著討論不同退火處理對CBD-ZnO薄膜的影響,實驗最後以快速熱退火取代長時間高溫退火,使元件未來可以製作在軟板上。本論文證實了在未來有機太陽能製程中,可以運用CBD技術成膜ZnO,大量製作大面積的有機太陽能電池。
Zinc Oxide (ZnO) has received high attention because of its high mobility and air-stable, which makes it attractive for use in inverted organic solar cells. Many research groups reported that ZnO thin films were prepared by atomic layer deposition (ALD), spin-coating, sputtering, and spray-coating etc. Using Chemical bath deposition to fabricate Zinc oxide as electron selective layer in organic solar cells is a novel technique. The Chemical bath deposition with potential advantages of enabling a large-area coating, low-cost and low-temperature can overcome the drawbacks of other processes.
In this work, ZnO thin films used as electron selective layer were successfully deposited on glass/ITO substrates by the method of chemical bath deposition in organic solar cells. The devices exhibit a PCE of 3.93% with optimum film thickness and annealing temperature, and achieved 4.61% after electrode treatment.
[1]. D. M. Chapin, C. S. Fuller, and G. L. Pearson,” A new silicon pn junction photocell for converting solar radiation into electrical power,” J. Appl. Phys. 25, 676 (1954).
[2]. News-“Tandem organic photovoltaic reaches 10.6% efficiency a world’s first for polymer organic photovoltaic devices”(2012).
[3]. M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hason, and R. Noufi, ―Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells,‖ Prog. Photovolt.: Res. Appl. 7, 311 (1999).
[4]. K. M. Coakley,Wudl and M. D. McGehee,―Conjugated polymer photovoltaic cells,‖ Chem. Mater. 16, 4533 (2004).
[5]. Harald Hoppe, and Niyazi Serdar Sariciftci,―Organic solar cell: An review,‖J. Mater. Res., Vol. 19, No. 7, Jul 2004.
[6]. C. W. Tang, “Two-layer organic photovoltaic cell,” Appl. Phys. Lett. 48, 183 (1986).
[7]. G. Yu, K. Pakbaz, and A. J. Heeger,“Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible-ultraviolet sensitivity,”Appl. Phys. Lett. 64, 3422 (1994).
[8]. C. J. Brabec, F. Pandinger, “Realization of large area flexible fullereneconjugate polymer photocells: a route to plastic solar cell,” Synthetic Metals 102, 861-864 (1999).
[9]. M. Al-Ibrahim, H. K. Roth, and S. Sensfuss, Appl. Phys. Lett. 85, 1481 (2004)
[10]. G. Li, C.-W. Chu, V. Shrotriya, J. Huang, Y. Yang,“Efficient inverted solar cells,” Appl. Phys. Lett. 88, 253503 (2006).
[11]. Hua-Hsien Liau, Li-Min Chen, Zheng Xu, Gang Li, and Yang Yang,“Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer,” Appl. Phys. Lett. 92, 173303 (2008).
[12]. M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, “Inverted bilk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer,” Appl. Phys. Lett. 89, 143517 (2006).
[13]. Steven K. Hau, Hin-Lap Yip, Nam Seob Baek, Jingyu Zou, Kevin O’Malley, and Alex K.-Y. Jen,“Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer,” Appl. Phys. Lett. 92,253301 (2008).
[14]. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. De Leeuw, “ Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,” Nature, 401, 685 (1999).
[15]. J. C. Hummelen, B. W. Knight, F. Lepeq, F. Wudl, J. Yao, and C. L. Wilkins, “Preparation and Characterization of Fulleroid and Methanofullerene Derivatives,” J.Org. Chem. 60, 532 (1995)
[16]. E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. V. Veenendaal, B. H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, T. M. Klapwijk. Nat. Mater. 2, 678 (2003)
[17]. H. Hoppe, and N. S. Sariciftci, “Organic solar cells: An overview,” J. Mater. Res. 19, 1924 (2004).
[18]. D Redinger, “High-Performance Chemical-Bath-Deposited Zinc Oxide Thin-Film Transistors,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 54, NO. 6, JUNE 2007
[19]. H. Khallaf,” Investigation of chemical bath deposition of ZnO thin films using six differentcomplexing agents”
[20]. J.C. Berne`de , and Y. Lare, “ZnO thin films fabricated by chemical bath deposition, used as buffer layer inorganic solar cells,” Applied Surface Science 255 (2009) 6615–6619.
[21]. M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. ginley,”Inverted bilk-heterojunction organic photovoltaic device using a solution-deriverd ZnO underlayer,” Appl. Phys. Lett. 89,143517(2006).
[22]. Y.Yoshino,K.Inoue,M.Takeuchi,K.Ohwada,Vacuum51,601-607.,1998.
[23]. J.C. Wang, W.T. Weng, S.F. Horng,”Highly efficient flexible inverted organic solar cells using atomic layer deposited ZnO as electron selective layer,” Journal of Materials Chemistry.,2012, 20, 862-866.
[24]. S.J. Lim, Soonju Kwon, H. Kim, “ZnO thin films prepared by atomic layer deposition and rf sputtering as an active layer for thin film transistor,” Thin Solid Films 516, 1523–1528 (2008).
[25]. J.W. Kang, Y.J. Kang, “Spray-coated ZnO electron transport layer for air-stable inverted organic solar cells,” Volume 96, January 2012, Pages 137–140.