研究生: |
李昆穆 Li, Kun-Mu |
---|---|
論文名稱: |
氧化錫奈米結構之合成、特性及應用 Synthesis, Properties, and Applications of the Sn-O Based Nanostructures |
指導教授: |
陳力俊
Chen, Lih-Juann |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 94 |
中文關鍵詞: | 氧化錫 、奈米結構 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Abstract
Tin oxides possess unique properties and broad applications. Synthesis, properties and applications of Sn-O based nanostructures have been investigated. The thesis covers synthesis of Sn-O based nanostructures and its potential applications:
(1) Direct Conversion of Single-Layer SnO Nanoplates to Multi-Layer SnO2 Nanoplates with Enhanced Ethanol Sensing Properties: The SnO nanoplates were synthesized by thermal evaporation and condensation method. The single-layer SnO nanplates were converted to single-layer or multi-layer rutile SnO2 nanoplates by annealing in different oxygen-flowing. The sensitivities (Sg) of multi-layer SnO2 nanoplates are higher than the single-layer ones.
(2) Sunflower-like Nanostructures Composed of SiOx Nanorods with Spotty SnO2 Nanoparticles Exhibiting Enhanced Luminescence Properties: SiOX nanorods have been synthesized via a vapor phase transport method and the size of absorbed SnO2 nanoclusters is controlled by varying the flow of O2. The luminescence properties of the SiOX nanorods are varying with absorbed SnO2 nanoclusters.
(3) Room-temperature Synthesis of P-type SnO Plates and Application in Light Emitting Diode: The p-type SnO plates were produced by an aqueous chemical growth method. The SnO paste was deposited onto the ITO substrate by the doctor-blade method. The n-type TPBi were spun on the SnO paste. The turn-on voltage and electroluminescence properties of the LEDs were investigated.
摘要
因為氧化錫的獨特性質及廣泛的應用,本論文探討氧化錫的合成、性質及應用。利用化學氣相反應及水溶液法,成功合成出氧化亞錫奈米片狀物及氧化矽/氧化錫的奈米結構,本論文分成三個部分:
(1)將氧化亞錫奈米片轉換成氧化錫並增強氣體偵測效果:透過化學氣相反應法,成長出氧化亞錫奈米片,透過退火可轉成單層或多層的氧化錫的片狀物,多層片狀物的氣體偵測較單層片狀物敏銳。
(2) 氧化矽奈米棒/氧化錫奈米粒子複合結構及其發光特性: 透過化學氣相反應法,及調變氧的流量,可控制氧化錫奈米粒子的大小,進一步改變發光強度。
(3) 氧化錫片狀物與n-型高分子組成的有機無機異質結構發光二極體:在室溫下以水溶液法合成p型半導體氧化亞錫片狀物,透過刮塗法將氧化亞錫塗在ITO上,在旋塗一層n型高分子TPBi,作成有機無機異質結構發光二極體,並量測到起始電壓及發光性質。
References
Chapter 1
1.1 G. E. Moore “Cramming more components onto integrated circuits,” Electronics 1965, 38, 114-117
1.2 "Excerpts from a conversation with Gordon Moore: Moore’s Law". Intel Corporation 2005.
1.3 X. M. Zhang, M. Y. Lu, Y. Zhang, L. J. Chen, and Z. L. Wang, “Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN thin film,” Adv. Mater. 2009, 21, 2767-2770.
1.4 J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, “Large on-off ratios and negative differential resistance in a molecular electronic device,” Science 1999, 286, 1550-1552.
1.5 X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 2001, 409, 66-69.
1.6 L. J. Chen, “Silicon nanowires: key building block for future electronics,” J. Mater. Chem. 2007, 17, 4639-4643.
1.7 J. H. He, C. L. Hisn, J. Liu, L. J. Chen, and Z. L. Wang, “Piezoelectric gated diode of a single ZnO nanowire,” Adv. Mater. 2007, 19, 781-784.
1.8 Z. L. Wang, “Nanowires and nanobelts materials, properties and devices, metal and semiconductor nanowires, vol. I,” Kluwer Academic Publishers, Dordrecht, Netherlands, 2003.
1.9 Y. C. Chang, and L. J. Chen, “ZnO nanoneedles with enhanced and sharp ultraviolet cathodoluminescence peak,” J. Phys. Chem. C 2007, 111, 1268-1272.
1.10 J. H. He, T. H. Wu, C. L. Hsin, K. M. Li, L. J. Chen, Y. L. Chueh, L. J. Chou, and Z. L. Wang, “Beak-like SnO2 nanorods with strong photoluminescent and field emission Properties,” Small 2006, 2, 116-120.
1.11 K. M. Li, Y. J. Li, M. Y. Lu, C. Y. Kuo, and L. J. Chen, “Direct conversion of single-layer SnO nanoplates to multi-layer SnO2 nanoplates with enhanced ethanol sensing properties,” Adv. Funct. Mater. 2009, 19, 2453-2456.
1.12 Q. Wan, E. N. Dattoli, and W. Lu, “Transparent metallic Sb-doped SnO2 nanowires,” Appl. Phys. Lett. 2007, 90, 222107
1.13 Y. J. Li, C. Y. Wang, M. Y. Liu, K. M. Li, and L. J. Chen, “Electrodeposited hexagonal ring-like superstructures composed of hexagonal Co-doped ZnO nanorods with optical tuning and high-temperature ferromagnetic properties,” Crystal Growth & Design 2008, 8, 2598-2602.
1.14 J. B. Cui, and U. J. Gibon, “Electrodeposition and room temperature ferromagnetic anisotropy of Co and Ni-doped ZnO nanowire arrays,” Appl. Phys. Lett. 2005, 87, 133108.
1.15 J. H. He, C. S. Lao, L. J. Chen, D. Davidovic, and Z. L. Wang, “Large-scale Ni-doped ZnO nanowire arrays and electrical and optical properties,” J. Am. Chem. Soc. 2005, 127, 16376-16377.
1.16 T. W. Odom, J. L. Huang, P. Kim, and C. M. Lieber, "Structure and electronic properties of carbon nanotubes," J. Phys. Chem. B 2000, 104, 2794-2809.
1.17 Z. L. Wang, “Characterizing the structure and properties of individual wire-like nanoentities,” Adv. Mater. 2000, 12, 1295-1298.
1.18 J. Hu, M. Ouyang, P. Yang, and C. M. Lieber, “Controlled growth and electrical properties of nanotube/nanowire heterojunctions,” Nature 1999, 399, 48-51.
1.19 X. D. Wang, J. H. Song, J. Liu, and Z. L. Wang, “Direct-current nanogenerator driven by ultrasonic waves,” Science 2007, 316, 102-105.
1.20 Z. L. Wang and J. H. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire Arrays,” Science 2006, 312, 242-246.
1.21 T. C. Karni, B. P. Timko, L. E. Weiss, and C. M. Lieber, "Flexible electrical recording from cells using nanowire transistor arrays," Proc. Natl. Acad. Sci. USA 2009, 106, 7309-7313.
1.22 B. Yuhas, and P. Yang, “Nanowire-based all-oxide solar cell,” J. Am. Chem. Soc. 2009, 131, 3756-3761.
1.23 S. Vandenbrouck, K. Madjour, D. Theron, Y. J. Dong, Y. Li, C. M. Lieber, and C. Gaquiere, "12 GHz F-MAX GaN/AlN/ AlGaN nanowire MISFET," IEEE Electron Dev. Lett. 2009, 30, 322-324.
1.24 M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. D. Yang, “Nanowire dye-sensitized solar cells,” Nature Materials 2005, 4, 455-459.
1.25 O. Hayden, A. B. Greytak, and D. C. Bell, “Core-shell nanowire light-emitting diodes,” Adv. Mater. 2005, 17, 701-704.
1.26 R. Kőnenkamp, R. C. Word, and C. Schlegel, “Vertical nanowire light-emitting diode,” Appl. Phys. Lett. 2004, 85, 6004-6006.
1.27 C. H. Lai, K. W. Huang, J. H. Cheng, C. Y. Lee, W. F. Lee, C. T. Huang, B. J. Hwang, and L. J. Chen, “Oriented growth of large-scale nickel sulfide nanowire arrays via general solution route for lithium-ion battery cathode applications,” J. Mater. Chem. 2009, 19, 7277-7283.
1.28 R. S. Wagner, and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 1964, 4, 89-90.
1.29 E. Koren, N. Berkovitch, and Y. Rosenwaks, “Measurement of active dopant distribution and diffusion in individual silicon nanowires,” Nano Lett. 2010, 10, 1163-1167.
1.30 Y. Yan, L. Zhou, J. Zhang, H. Zeng, Y. Zhang, and L. Zhang, “Synthesis and growth discussion of one-dimensional MgO nanostructures: nanowires, nanobelts, and nanotubes in VLS mechanism,” J. Phys. Chem. C 2008, 112, 10412-10417.
1.31 S. Shukla, V. Venkatachalapathy, and S. Seal, “Thermal evaporation processing of nano and submicron tin oxide rods,” J. Phys. Chem. B 2006, 110, 11210-11216.
1.32 J. H. He, J. H. Hsu, H. N. Lin, L. J. Chen, and Z. L. Wang, “Pattern and feature designed growth of ZnO nanowire arrays for vertical devices,” J. Phys. Chem. B 2006,110, 50-53.
1.33 J. H. He, T. H. Wu, C. L. Hsin, L. J. Chen, and Z. L. Wang, “Synthesis of Si-Ge oxide nanowires via the transformation of Si-Ge thin films with self-assembled Au catalysts,” Electrochem. Solid State Lett. 2005, 8, G254-G257.
1.34 P.Y. Su, M. Y. Lu, J. C. Hu, S. L. Cheng, L. J. Chen, and J. M. Liang, “Growth of light-emitting Silicate nanowires on individual Au particles in self-assembled hexagonal Au particle networks,” Appl. Phys. Lett. 2005, 87, 163101.
1.35 Y. H. Yang, C. X. Wang, B. Wang, N. S. Xu, and G. W. Yang, “ZnO nanowire and amorphous diamond nanocomposites and field emission enhancement,” Chem. Phys. Lett. 2005, 403, 248-251.
1.36 K. H. Lee, S. W. Lee, R. R. Vanfleet, and W. Sigmund, “Amorphous silica nanowires grown by the vapor-solid mechanism,” Chem. Phys. Lett. 2003, 376, 498-503.
1.37 H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P. Yu, Y. Ding, Q. L. Hang, and S. Q. Feng, “Ga2O3 nanowires prepared by physical evaporation,” Sol. Stat. Commun. 1999, 109, 677-682.
1.38 N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, and S. T. Lee, “Nucleation and growth of Si nanowires from silicon oxide,” Phys. Rev. B 1998, 58, R16024-R16026.
1.39 R. Q. Zhang, Y. Lifshitz, and S. T. Lee, “Oxide-assisted growth of semiconducting nanowires,” Adv. Mater. 2003, 15, 635-640.
1.40 J. Hu, Y. Bando, J. Zhan, X. Yuan, T. Sekiguchi, and D. Golberg, “Self-assembly of SiO2 nanowires and Si microwires into hierarchiral heterostructures on a large scale,” Adv. Mater. 2005, 17, 971-975.
1.41 Y. C. Chang, L. J. Chen, “ZnO nanoneedles with enhanced and sharp ultraviolet cathodoluminescence peak,” J. Phys. Chem. C 2007, 111, 1268-1272.
1.42 L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater. 2003, 15, 464-466.
1.43 L. Vayssieres, K. Keis, S. E. Lindquist, and A. Hagfeldt, “Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO,” J. Phys. Chem. B 2001, 105, 3350-3352.
1.44 H. Uchiyama, and H. Imai, “Matrix-mediated formation of hierarchically structured SnO crystals as intermediates between single crystals and polycrystalline aggregates,” Langmuir 2008, 24, 9038-9042.
1.45 L. Vayssieres, and M. Graetzel, “Highly ordered SnO2 nanorod arrays fromcontrolled aqueous growth,” Angew. Chem. Int. Ed. 2004, 43, 3666-3670
1.46 X. L. Tian, W. H. Wang, and G. Y. Cao, “A facile aqueous-phase route for the synthesis of silver nanoplates,” Mater. Lett. 2007, 61, 130-133.
1.47 W. Zhu, W. Wang, H. Xu, and J. Shi, “Fabrication of ordered SnO2 nanotube arrays via a template route,” Mater. Chem. Phys. 2006, 99, 127-130.
1.48 W. C. Yang, C. W. Wang, J. H. He, Y. C. Chang, J. C. Wang, L. J. Chen, H. Y. Chen, and S. Gwo, “Facile synthesis of large scale Er-doped ZnO flower-like structures with enhanced 1.54 μm infrared emission,” Phys. Stat. Sol. 2008, (a), 1-6.
1.49 M. Batzill, and U. Diebold, “The surface and materials science of tin oxide,” Prog. Surf. Sci 2005, 79, 47-154.
1.50 W. Gopel, and K. D. Schierbaum, “SnO2 sensors-current status and future prospects,” Sens. Actuators B. 1995, 26, 1-12.
1.51 F. Ding, Z. W. Fu, M. F. Zhou, and Q. Z. Qin, “Tin-based composite oxide thin-film electrodes prepared by pulsed laser deposition,” J. Electrochem. Soc. 1999, 146, 3554-3559.
1.52 Z. R. Dai, J. L. Gole, J. D. Stout, and Z. L. Wang, “Tin oxide nanowires, nanoribbons, and nanotubes,” J. Phys. Chem. B 2001, 106, 1274-1279.
1.53 Y Liu, H Dong, and M. L. Liu, “Well-aligned nano-box-beams of SnO2,” Adv. Mater. 2004, 16, 353-356.
1.54 X. M. Yin, C. C. Li, M. Zhang, Q. Y. Hao, S. Liu, L. I. Chen, and T. H. Wang, “One-step synthesis of hierarchical SnO2 hollow nanostructures via self-assembly for high power Lithium ion batteries,” J. Phys. Chem. C 2010, 114, 8084-8088.
1.55 E. Comini, G. Faglia, G. Sberveglieri, D. Calestani, L. Zanotti, and M. Zha, “Tin oxide nanobelts electrical and sensing properties,” Sens. Act. B. 2004, 111-112, 2-6.
1.56 S. H. Luo, J. Y. Fan, W. L. Liu, M. Zhang, Z. T. Song, C. L. Lin, X. L. Wu, and P. K. Chu, “Synthesis and low-temperature photoluminescence properties of SnO2 nanowires and nanobelts,” Nanotechnology 2006, 17, 1695-1699.
1.57 Q. Wan, E. N. Dattoli, and W. Lu, “Transparent metallic Sb-doped SnO2 nanowires,” Appl. Phys. Lett. 2007, 90, 222107.
1.58 Y. Cheng, P. Xiong, L. Fields, J. P. Zheng, R. S. Yang, and Z. L. Wang, “Intrinsic characteristics of semiconducting oxide nanobelt field-effect transistors,” Appl. Phys. Lett. 2006, 89, 093114.
1.59 P. Meduri, C. Pendyala, V. Kumar, G. U. Sumanasekera, M. K. Sunkara, and K. Mahendra, “Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries,” Nano lett. 2009, 9, 612-616.
1.60 H. J. Snaith, Henry, and C. Ducati, “SnO2-based dye-sensitized hybrid solar cells exhibiting near unity absorbed photon-to-electron conversion efficiency,” Nano lett. 2010, 10, 1259-1265.
1.61 A. Kock, A. Tischner, T. Maier, M. Kast, C. Edtmaier, C. Gspan, and G.. Kothleitner, “Atmospheric pressure fabrication of SnO2-nanowires for highly sensitive CO and CH4 detection,” Sens. Actu. B 2009, 138, 160-167.
1.62 Y. Lilach, J. P. Zhang, M. Moskovits, and A. Kolmakov, “Encoding morphology in oxide nanostructures during their growth,” Nano Lett. 2005, 5, 2019-2022.
1.63 S. Wang, S. H. Xie, H. X. Li, S. R. Yan, K. N. Fan and M. H. Qiao, “Solution route to single crystalline SnO platelets with tunable shapes,” Chem. Commun. 2005, 4, 507-509.
1.64 J. H. Shin, J. Y. Song, Y. H. Kim and H. M. Park, “Low temperature and self-catalytic growth of tetragonal SnO nanobranch,” Mater. Lett. 2010, 64, 1120–1122.
1.65 Z. R. Dai, Z. W. Pan, and Z. L. Wang,” Growth and Structure evolution of novel tin oxide diskettes,” J. Am. Chem. Soc. 2002, 124, 8673-8680.
1.66 Z. J. Jia, L. P. Zhu, G. H. Liao, Y. Yu, and Y. W. Tang, “Preparation and characterization of SnO nanowhiskers,” Sol. Stat. Commun. 2004, 132, 79-82.
1.67 H. Uchiyama, and H. Imai, “Tin oxide meshes consisting of nanoribbons prepared through an Intermediate phase in an aqueous solution,” Crystal Growth & Design 2007, 7, 841-843.
1.68 Z. L. Wang, and Z. W. Pan, “Junctions and Networks of SnO nanoribbons,” Adv. Mater. 2002, 14, 1029-1032.
1.69 Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, “P-channel thin-film transistor using p-type oxide semiconductor SnO,” Appl. Phys. Lett. 2008, 93, 032113
1.70 K. Sakaushi, Y. Oaki, H. Uchiyama, E. Hosono, H. S. Zhou, E. Haoshen, and H. Imai, “Synthesis and applications of SnO nanosheets: parallel control of oxidation state and nanostructure through an aqueous solution route,” Small 2010, 6, 776-781.
Chapter 3
3.1 Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides,” Science 2001, 291, 1947-1949.
3.2 X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 2001, 409, 66-69.
3.3 J. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes,” Acc. Chem. Res. 1999, 32, 435-445.
3.4 L. J. Chen, “Silicon nanowires: key building block for future electronics,” J. Mater. Chem. 2007, 17, 4639-4643.
3.5 S. Mathur, S. Barth, H. Shen, J. C. Pyun, and U. Werner, “Size-dependent photoconductance in SnO2 nanowires,” Small 2005, 1, 713-717.
3.6 H. C. Hsu, W. W. Wu, H. F. Hsu, and L. J. Chen, “Controlled growth of high-density titanium silicide nanowires in a single direction on silicon,” Nano Lett. 2007, 7, 885-889.
3.7 Y. C. Chou, W. W. Wu, S. L. Cheng, B. Y. Yoo, N. Myung, L. J. Chen, and K. N. Tu, “In–situ TEM observation of repeating events of nucleation in epitaxial growth of nano CoSi2 in nanowires of Si,” Nano Lett. 2008, 8, 2194-2199.
3.8 Y. J. Li, M. Y. Lu, C. W. Wang, K. M. Li, and L. J. Chen, “ZnGa2O4 nanotubes with sharp cathodoluminescence Peak,” Appl. Phys. Lett. 2006, 88, 143102;
3.9 J. H. He, C. L. Hsin, J. Liu, L. J. Chen, and Z. L. Wang, “Piezoelectric gated diode of a single ZnO nanowire,” Adv. Mater. 2007, 19, 781-784.
3.10 C. Y. Wang, N. W. Gong, and L. J. Chen, “Au(Si)-filled B-Ga2O3 nanotubes as wide range high temperature nanothermometers,” Adv. Mater. 2008, 20, 4789-4792.
3.11 A. Kay, and M. Gratzel, “Dye-sensitized core-shell nanocrystals: improved efficiency of mesoporous tin oxide electrodes coated with a thin layer of an insulating oxide,” Chem. Mater. 2002, 14, 2930-2935.
3.12 A. Kolmakov, Y. Zhang, G. Cheng, and M. Moskovits, “Detection of CO and O2 using tin oxide nanowire sensors,” Adv. Mater. 2003, 15, 997-1000.
3.13 V. V. Sysoev, B. K. Button, K. Wepsiec, S. Dmitriev, and A. Kolmakov, “Toward the nanoscopic “Electronic Nose”: hydrogen vs carbon monoxide discrimination with an array of individual metal oxide nano- and mesowire sensors,” Nano Lett. 2006, 6, 1584-1588.
3.14 G. Sberveglieri, C. Baratto, E. Comini, G. Faglia, M. Ferroni, A. Ponzoni, and A. Vomiero, “Synthesis and characterization of semiconducting nanowires for gas sensing,” Sensor Actuator B 2007, 12, 208-213.
3.15 F. Sun, W. Cai, Y. Li, L. Jia, and F. Lu, “Direct growth of mono- and multilayer nanostructured porous films on curved surfaces and their application as gas sensors,” Adv. Mater. 2005, 17, 2872-2877.
3.16 E. Comini, G. Faglia, G. Sberveglieri, Z. W. Pan, and Z. L. Wang, “Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts,” Appl. Phys. Lett. 2002, 81, 1869.
3.17 I. Stambolova, K. Konstantinov, S. Vassilev, P. Peshev, and T. Tsacheva, “Lanthanum doped SnO2 and ZnO thin films sensitive to ethanol and humidity,” Mater. Chem. Phys. 2000, 63, 104-108.
3.18 Q. Wan, and T. H. Wang, “Single-crystalline Sb-doped SnO2 nanowires: synthesis and gas sensor application,” Chem. Commun. 2005, 3841-3843.
3.19 M. S. Arnold, P. Avouris, Z. W. Pan, and Z. L. Wang, “Field-effect transistors based on single semiconducting oxides nanobelts,” J. Phys. Chem. B 2003, 107, 659-663.
3.20 Z. R. Dai, Z. W. Pan, and Z. L. Wang, “Growth and structure evolution of novel tin oxide diskettes,” J. Am. Chem. Soc. 2002, 124, 8673-8680.
3.21 D. F. Zhang, L. D. Sun, J. L. Yin, and C. H. Yan, “Low-temperature fabrication of highly crystalline SnO2 nanorods,” Adv. Mater. 2003, 15, 1022-1025.
3.22 J. H. He, T. H. Wu, C. L. Hsin, K. M. Li, L. J. Chen, Y. L. Chueh, L. J. Chou, and Z. L. Wang, “Beak-like SnO2 nanorods with strong photoluminescent and field emission properties,” Small 2006, 2, 116-120.
3.23 Y. Lilach, J. P. Zhang, M. Moskovits, and A. Kolmakov, “Encoding morphology in oxide nanostructures during their growth,” Nano Lett. 2005, 5, 2019-2022.
3.24 Y. Liu, J. Dong, and M. Liu, “Well-aligned nano-box-beams of SnO2,” Adv. Mater. 2004, 16, 353-356.
3.25 J. Calderer, P. Molinas, J. Sueiras, E. Llobet, X. Vilanova, X. Correig, F. Masana, and A. Rodriguez, “Synthesis and characterisation of metal suboxides for gas sensors,” Microelectron. Reliab. 2000, 40, 807-810.
3.26 J. S. Sakamolo, C. K. Huang, S. Surampudi, M. Smart, and J. Wolfenstine, “The effects of particle size on SnO electrode performance in lithium-ion cells,” Mater. Lett. 1998, 33, 327-329.
3.27 Y. Wang, O. Warschkow, and L. D Marks, “Surface evolution of rutile TiO2 (1 0 0) in an oxidizing environment,” Surf. Sci. 2007, 601, 63-67.
3.28 E. L. P. Y. Blancá, A. Svane, N. E. Christensen, C. O. Rodríguez, O. M. Cappannini, and M. S. Moreno, “Calculated static and dynamic properties of β-Sn and Sn-O compounds,” Phys. Rev. B 1993, 48, 15712-15718.
3.29 S. Luo, P. K. Chu, W. Liu, M. Zhang, and C. Lin, “Origin of Low-temperature photoluminescence from SnO2 nanowires fabricated by thermal evaporation and annealed in different ambients,” Appl. Phys. Lett. 2006, 88, 183112.
3.30 A. Kolmakov, and M. Moskovits, “Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures,” Annu. Rev. Mater. Res. 2004, 34, 151-180.
3.31 P. Feng, Q. Wan, and T. H. Wang, “Contact-controlled sensing properties of flowerlike ZnO nanostructures,” Appl. Phys. Lett. 2005, 87, 213111.
Chapter 4
4.1 Y. Li, J. Xiang, F. Qian, S. Gradecak, Y. Wu, H. Yan, D.A. Blom, and C.M. Lieber, “Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors,” Nano Lett. 2006, 6, 1468-1473.
4.2 G. Shen, Y. Bando, C. C. Tang, and D. Golberg, “Self- organized hierarchical ZnS/SiO2 nanowire heterostructures,” J. Phys. Chem. B 2006, 110, 7199-7202.
4.3 H. C. Chen, S. W. Lee, and L. J. Chen, “Self-aligned nanolenses with multilayered Ge-silica core-shell structures on Si (001),” Adv. Mater. 2007, 19, 222-226.
4.4 Y. J. Li, M. Y. Lu, C. W. Wang, K. M. Li, and L. J. Chen, “ZnGa2O4 nanotubes with sharp cathodoluminescence peak,” Appl. Phys. Lett. 2006, 88, 143102.
4.5 Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, “Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires,” J. Am. Chem. Soc. 2002, 124, 1817-1822.
4.6 J. Hu, Y. Bando, J. Zhan, X. Yuan, T. Sekiguchi and D. Golberg, “Self-assembly of SiO2 nanowires and Si microwires into hierarchiral heterostructures on a large scale,” Adv. Mater. 2005, 17, 971-975.
4.7 Y. L. Chueh, L. J. Chou, and Z. L. Wang, “SiO2/Ta2O5 core-shell nanowires and nanotubes,” Angew. Chem.2006, 45, 7773-7778.
4.8 L. R. Ren, L. Guo, M. Wark, and Y. L. Hou, “Self-integration of aligned cobalt nanoparticles into silica nanotubes,” Appl. Phys. Lett. 2005, 87, 212503.
4.9 D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, and S. Q. Feng, “Amorphous silica nanowires: Intensive blue light emitters,” Appl. Phys. Lett. 1998, 73, 3076.
4.10 J. H. He, W. W. Wu, S. W. Lee, L. J. Chen, Y. L. Chueh, and L. J. Chou, “Synthesis of blue-light-emitting Si1-xGex oxide nanowires,” Appl. Phys. Lett. 2005, 86, 263109.
4.11 J. H. He, T. H. Wu, C. L. Hsin, L. J. Chen, and Z. L. Wang, “Synthesis of Si-Ge oxide nanowires via the transformation of Si-Ge thin films with self-assembled Au catalysts,” Electrochem. Solid State Lett. 2005, 8, G254-G257.
4.12 X. An, G. W. Meng, Q. Wei, X. Zhang, Y. Hao, and L. D. Zhang, “Synthesis and photoluminescence of SnO2/SiO2 microrings,” Adv. Mater. 2005, 17, 1781-1784.
4.13 Y. Q. Zhu, W. B. Hu, W. K. Hsu, M. Terrones, N. Grobert, T. Karali, H. Terrones, J. P. Hare, P. D. Townsend, H. W. Kroto, and D. R. M. Walton, “A simple route to silicon-based nanostructures,” Adv. Mater. 1999, 11, 844-847.
4.14 Z. W. Pan, S. Dai, D. B. Beach, and D. H. Lowndes, “Temperature dependence of morphologies of aligned silicon oxide nanowire assemblies catalyzed by molten gallium,” Nano Lett. 2003, 3, 1279-1284.
4.15 S. H. Sun, G. W. Meng, M. A. Zhang, Y. F. Hao, X. R. Zhang, and L. D. Zhang, “Microscopy study of the growth process and structural features of closely packed silica nanowires,” J. Phys. Chem. B 2003, 107, 13029-13032.
4.16 Z. W. Pan, S. Dai, and D. B. Beach, and D. H. Lowndes, “Liquid gallium ball/crystalline silicon polyhedrons/aligned silicon oxide nanowires sandwich structure: An interesting nanowire growth route,” Appl. Phys. Lett. 2003, 83, 3159.
4.17 P. T. Moseley, “Solid state gas sensors,” Meas. Sci. Technol. 1997, 8, 223-237.
4.18 J. L. Gole, and Z. L. Wang, “SnOx nanocrystallites supported by silica nanostructures,” Nano Lett. 2001, 8, 449-451.
4.19 J. Q. Hu, Y. Bando, J. H. Zhan, X. L.Yuan, T. Sekiguchi, C. Li, and D. Golberg, “Silica fibers with triangular cross sections,” Adv. Mater. 2006, 18, 1852-1856.
4.20 Z. L. Wang and Z. W. Pan, “Junctions and networks of SnO nanoribbons,” Adv. Mater. 2002, 14, 1029-1032.
4.21 P. Y. Su, M. Y. Lu, J. C. Hu, S. L. Cheng, and L. J. Chen, “Growth of light-emitting silicate nanowires on individual Au particles in self-assembled hexagonal Au particle networks,” Appl. Phys. Lett. 2005, 87, 163101.
4.22 H. Nishikawa, T. Shiroyama, R. Nakamura, and Y. Ohki, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B 1992, 45, 586-591.
4.23 L. Skuja, “Isoelectronic series of twofold coordinated Si, Ge, and Sn atoms in glassy SiO2: a luminescence study,” J. Non-cryst. Solids 1992, 149, 77-95.
Chapter 5
5.1 Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides,” Science 2001, 291, 1947-1949.
5.2 X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 2001, 409, 66-69.
5.3 F. Tian, J. Zhu, D. Wei, and Y. T. Shen, “Magnetic field assisting DC electrodeposition: general methods for high- performance Ni nanowire array fabrication,” J. Phys. Chem. B 2005, 109, 14852-14854.
5.4 Y. C. Chang, H. W. Wu, H. L. Chen, W. Y. Wang, and L. J. Chen, “2D Inverse opal ZnO nanorod networks with photonic band gap,” J. Phys. Chem. C 2009, 113, 14778- 14782.
5.5 Y. J. Li, M.Y. Lu, C.W. Wang, K. M. Li, and L. J. Chen, “ZnGa2O4 nanotubes with sharp cathodoluminescence peak,” Appl. Phys. Lett. 2006, 88, 143102.
5.6 S. Mathur, S. Barth, H. Shen, J. C. Pyun, and U. Werner, “Size-dependent photoconductance in SnO2 nanowires,” Small 2005, 1, 713-717.
5.7 J. H. He, C. L. Hisn, J. Liu, L. J. Chen, and Z. L. Wang, “Piezoelectric gated diode of a single ZnO nanowire,” Adv. Mater. 2007, 19, 781-784.
5.8 J. Calderer, P. Molinas, J. Sueiras, E. Llobet, X. Vilanova, X. Correig, F. Masana, and A. Rodriguez, “Synthesis and characterisation of metal suboxides for gas sensors,” Microelectron. Reliab. 2000, 40, 807-810.
5.9 Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, and T. Miyasaka, “Tin-based amorphous oxide: a high-capacity lithium-ion-storage material,” Science 1997, 276, 1395-1397.
5.10 J. S. Sakamolo, C. K. Huang, S. Surampudi, M. Smart, and J. Wolfenstine, “The effects of particle size on SnO electrode performance in lithium-ion cells,” Mater. Lett.1998, 33, 327-329.
5.11 H. Uchiyama, E. Hosono, I. Honma, H. Zhou, and H. Imai, “A nanoscale meshed electrode of single-crystalline SnO for lithium-ion rechargeable batteries,” Electrochem. Commun. 2008, 10, 52-55.
5.12 A. Togo, F. Tanaka, and K. Tatsumi, “First-principles calculations of native defects in tin monoxide,” Phys. Rev. B 2006, 74, 195128.
5.13 Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi. T. Kamiya, M. Hirano, and H. Hosono, “P-channel thin-film transistor using p-type oxide semiconductor SnO,” Appl. Phys. Lett. 2008, 93, 032113.
5.14 R. Kőnenkamp, Robert C. Word, and C. Schlegel, “Vertical nanowire light-emitting diode,” Appl. Phys. Lett. 2004, 85, 6004.
5.15 A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nature Materials 2005, 4, 42-46.
5.16 R. Kőnenkamp, Robert C. Word, and M. Godinez, “Ultraviolet electroluminescence from ZnO/polymer heterojunction light-emitting diodes,” Nano Lett. 2005, 5, 2005-2008.
5.17 J. Bao, M. A. Zimmler, and F. Capasso, “Nanowire-Based Dye- Sensitized Solar Cells,” Nano Lett. 2006, 6, 1719-1723.
5.18 A. Nadarajah, R. C. Word, J. Meiss, and R. Kőnenkamp, “Flexible inorganic nanowire light- emitting diode,” Nano Lett. 2008, 8, 534-537.
5.19 X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, “A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm,” Nano Lett. 2008, 8, 1219-1223.
5.20 C. J. Novotny, E. T. Yu, and P. K. L. Yu, “InP nanowire/polymer hybrid photodiode,” Nano Lett. 2008, 8, 775-779.
5.21 Z. R. Dai, Z. W. Pan, and Z. L. Wang, “Growth and structure evolution of novel tin oxide diskettes,” J. Am. Chem. Soc. 2002, 124, 8673-8680.
5.22 K. M. Li, Y. J. Li, C. I. Kuo, and L. J. Chen, “Direct conversion of single-layer SnO nanoplates to multi-layer SnO2 nanoplates with enhanced ethanol sensing properties,” Adv. Func. Mater. 2009, 19, 2453-2456.
5.23 M. O. Orlandi, A. J. Ramirez, E. R. Leite, and E. Longo, “Morphological evolution of tin oxide nanobelts after phase transition,” Crystal Growth & Design 2008, 8, 1067-1072.
5.24 M. O. Orlandi, and E. R. Leite, “Growth of SnO nanobelts and dendrites by a self-catalytic VLS process,” J. Phys. Chem. B 2006, 110, 6621-6625.
5.25 Z. L. Wang and Z. W. Pan, “Junctions and Networks of SnO nanoribbons,” Adv. Mater. 2002, 14, 1029-1032.
5.26 S. Wang, S. H. Xie, H. X. Li, S. R. Yan, K. N. Fan, and M. H. Qiao, “Solution route to single crystalline SnO platelets with tunable shapes,” Chem. Commun. 2005, 110, 507-509.
5.27 H. Uchiyama, H. Ohgi, and H. Imai, “Selective preparation of SnO2 and SnO crystals with controlled morphologies in an aqueous solution system,” Crystal Growth & Design 2006, 9, 2186-2190.
5.28 H. Uchiyama, and H. Imai, “Matrix-mediated formation of hierarchically structured SnO crystals as intermediates between single crystals and polycrystalline aggregates,” Langmuir 2008, 24, 9038-9042.
5.29 M. H. Huang, S. Mao, H. Feik , H. Q. Yan , Y. Y. Wu , H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 2001, 292, 1897-1899.
5.30 E. L. P. Y. Blancá, A. Svane, N. E. Christensen, C. O. Rodríguez, O. M. Cappannini, and M. S. Moreno, “Calculated static and dynamic properties of β-Sn and Sn-O compounds,” Phys. Rev. B 1993, 48, 15712-15718.
5.31 A. Wolf, M. Reiher, and B. A. Hess, “Correlated ab initio calculations of spectroscopic parameters of SnO within the framework of the higher-order generalized Douglas-Kroll transformation,” J. Chem. Phys. 2004, 120, 8624-8631.
5.32 T. Mori, H. Fujikawa, S. Tokito, and Y. Taga, “Electronic structure of 8-hydroxyquinoline aluminum/LiF/Al interface for organic electroluminescent device studied by ultraviolet photoelectron spectroscopy,” Appl. Phys. Lett.1998, 9, 2763.
Chapter 7
7.1 V. V. Sysoev, B. K. Button, K. Wepsiec, S. Dmitriev, and A. Kolmakov, “ Toward the nanoscopic “Electronic Nose”: hydrogen vs carbon monoxide discrimination with an array of individual metal oxide nano- and mesowire sensors,” Nano Lett. 2006, 6, 1584-1588.
7.2 M. P. Lu, J. H. Song, M. Y. Lu, M. T. Chen, Y. F. Gao, L. J. Chen, and Z. L. Wang, “Piezoelectric nanogenerator using p-type ZnO nanowire arrays,” Nano Lett. 2009, 9, 1223-1227
7.3 E. C. Garnett, and P. Yang, “Silicon nanowire radial p-n junction solar cells”, J. Am. Chem. Soc. 2008, 130, 9224, 2008.
7.4 R. Kőnenkamp, Robert C. Word, and M. Godinez, “Ultraviolet electroluminescence from ZnO/polymer heterojunction light-emitting diodes,” Nano Lett. 2005, 5, 2005-2008.