簡易檢索 / 詳目顯示

研究生: 吳柏漢
Wu, Bo-Han
論文名稱: 利用表面增強拉曼研究金屬串錯合物之金屬鍵結及電子結構和三-(2-苯基吡啶)銥金屬錯合物之異構化反應
Using Surface Enhanced Raman Spectroscopy to Study the Metal Bonding and Electronic Structures of Metal-String Complexes and Isomerization of Tris(2-phenylpyridinato-N,C2')Iridium(III)
指導教授: 陳益佳
Chen, I-Chia
口試委員: 蔡易州
Tsai, Yi-Chou
朱立岡
Chu, Li-Kang
陳仁焜
Chen, Jen-Kun
陳俊顯
Chen, Chun-Hsien
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 107
語文別: 中文
論文頁數: 162
中文關鍵詞: 拉曼金屬串奈米銥金屬異構化
外文關鍵詞: Raman, metal string, nano, Iridium, Isomerization
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用表面增強拉曼(surface enhanced Raman scattering,SERS)研究Ni3(dpa)4(NCS)2、Ru2Ni(dpa)4Cl2以及Ru2Cu(dpa)4Cl2 (dpa = dipyridylamine)等直線型三核金屬串錯合物和Ir(ppy)3以及Ir(pmb)3 (ppy = 2-phenylpyridinato, pmb = 1-phenyl-3-methylbenzimidazolin-2-ylidene)八面體型錯合物之振動模式及結構。利用高解析拉曼光譜系統,測量了雙核金屬錯合物、直線型三核混金屬串錯合物的拉曼與SERS訊號,配合吸收光譜、共振拉曼、表面增強拉曼、針尖增強拉曼以及電化學表面增強拉曼技術等技術與理論計算結果,對直線型三核金屬串錯合物中鎳-鎳和二釕核之鍵結及價數進行指認。其中在鎳金屬錯合物中,[Ni2]4+和[Ni3]6+是看不到鎳-鎳伸縮振動(νNi-Ni, str. or νNi3 sym. str.)。Ni2之不同氧化態的鎳-鎳鍵長非常接近,而 [Ni2]3+和[Ni2]5+之νNi-Ni, str.振動頻率分別為327和322 cm-1。[Ni3]5+和[Ni3]7+之νNi3 sym. str.分別為321和350 cm-1。在具二釕核之金屬串錯合物中,釕-釕伸縮振動(νRu-Ru, str.)為312、320、327和337 cm-1,分別對應於之[Ru2]n +核,n = 4 (π*4)、4 (π*2δ*2)、5 (π*δ*2)和6。再者,二釕核豐富的氧化態提供了區分不同晶格面還原活性的優勢。因此我們可以進一步藉由具二釕核的金屬串分子來研究不同晶格面的金奈米粒子之還原活性,並得到奈米金粒子的還原活性順序為晶格面{110}> {100}> {111}。我們將Ir(ppy)3錯合物包進二氧化矽殼層內,並將氧化矽殼層表面修飾3-氨基丙基三乙氧基矽烷(APTES)使其帶正電,藉此讓奈米銀靠近Ir(ppy)3。因此通過這個方法可以獲得Ir(ppy)3錯合物的表面增強拉曼散射光譜。這提供了一個便利的方法區分其異構物,且具有高的靈敏度可以用來研究它們的異構化過程。其中經式(mer)的Ir(ppy)3會經氙燈照光轉換成面式(fac),其異構化時間常數為3.1 分鐘。再者,經式也會熱異構化成面式。mer-Ir(ppy)3在pH 5.5和343 K下加熱17.5小時後,我們觀察到中間體其譜帶出現在320和662 cm-1,然後這些譜帶會消失形成fac-Ir(ppy)3。使用密度泛函理論計算,提出中間體應是一個八面體N-N Ir(ppy)3-HO-二氧化矽結構;譜帶320 cm-1處,指認為該中間體的銥-氧伸縮振動ν(Ir-O)。在酸性條件下pH 1-2,二氧化矽中的矽烷醇會與mer-Ir(ppy)3反應,且觀察到具有譜帶353 cm-1的副產物。根據SERS譜線和計算,這個副產物被指認為銥(III)矽氧化物,並且此新的譜帶被指認為ν(Ir-O)。


    We used surface enhanced Raman spectroscopy (SERS) to study the vibrational structures of Ni3(dpa)4(NCS)2, Ru2Ni(dpa)4Cl2, Ru2Cu(dpa)4Cl2 (dpa = di-pyridyl-amine), Ir(ppy)3, and Ir(pmb)3 (ppy = 2-phenylpyridinato, pmb = 1-phenyl-3-methylbenzimidazolin-2-ylidene). We recorded the Raman and SERS spectra of dinucleus metal complexes and triucleus metal string complexes. Comparing with their absorption spectra, resonance Raman, tip enhanced Raman, electrochemical SERS (ECSERS) data, and the results of density functional theory (DFT) calculations, the Ni-Ni bonding strength and the valence state of diruthenium metal ions can be determined. In nickel complxes, no band is assigned to the Ni-Ni stretching (νNi-Ni, str.) mode in [Ni2]4+ core, and to the Ni3 symmetric stretch (νNi3 sym. str.) in [Ni3]6+ core. For dinickel complexes, the νNi-Ni, str. of [Ni2]3+ and [Ni2]5+ is assigned to the band at 327 and 322 cm-1, respectively. For trinickel EMACs, the νNi3 sym. str. of [Ni3]5+ and [Ni3]7+ is at 321 and 350 cm-1, respectively. In these diruthenium metal string complexes, their valence states are verified and in [Ru2]n+ core, n = 4 π*4, 4 π*2δ*2, 5 π*2δ*, and 6, the νRu-Ru str. equals to 312, 320, 327, and 337 cm-1, respectively. Because of the multinuclear system these complexes have several redox potentials. This provides an advantage for differentiating the reduction activity of varied facets. According to our SERS data on different gold nanostructures, we obtained the order of reduction reactivity followed facet {110}> {100} > {111}. We also developed a new SERS sample preparation method that is enclosing the complex Ir(ppy)3 with a thin layer of silica then bonded to the surface of silver nanoparticle. This provides a convenient means to avoid reaction of complex with nanoparticle thus to attain the SERS spectra. The SERS curves display distinct intensity in the breathing mode of the fac- and mer- isomers permitting the study of their isomerization process. A direct conversion reaction of mer- to fac- isomerization is identified with time constant 3.1 min when mer was irradiated with Xe light. Via thermal activation, under moderate conditions (pH 5.5 and 343 K), we observed an intermediate particularly with new bands 320/662 cm−1 after heating for 17.5 h, and then those bands disappeared to form fac-Ir(ppy)3. On the basis of DFT calculations, the intermediate is proposed to contain octahedral N−N Ir(ppy)3−HO−silica structure; band at 320 cm−1 is assigned to iridium oxygen stretching mode ν(Ir-O) of this intermediate. Under acidic conditions, pH 1−2 catalyzed by silanol in silica, byproduct with band at 353 cm−1 was observed. According to the SERS data and the calculations, this byproduct is assigned to be iridium(III) siloxide, and this new band is assigned to ν(Ir-O).

    圖目錄 X 表目錄 XVII 第一章 序論 1 第二章 金屬串錯合物 3 2.1 雙核金屬錯合物簡介 3 2.1.1 二鎳金屬錯合物 3 2.1.2 二釕金屬錯合物 4 2.2 三核金屬錯合物簡介 4 2.2.1 直線型三鎳錯合物的鎳-鎳金屬鍵 4 2.2.2 鎳-鎳鍵之振動頻率指認問題 5 2.2.3 混合金屬串錯合物 7 2.2.4 直線型二釕鎳與二釕銅錯合物 7 2.2.5 直線型三鈷錯合物 8 2.3實驗方法 24 2.3.1 合成具不同晶格面之奈米粒子 24 2.3.2 SERS活性金電極備製 25 2.3.3 拉曼光譜架設 25 2.3.4 表面增強拉曼光譜測量 26 2.3.5 循環伏安法測量 27 2.3.6 電化學吸收光譜測量 27 2.3.7 電化學表面增強拉曼光譜測量 28 2.3.8 振動圓二色光譜測量 28 2.3.9 超低頻紅外線光譜測量 28 2.3.10表面針尖拉曼測量 28 2.3.11 顯微紅外光譜測量 30 2.4 結果-鎳錯合物 33 2.4.1 Ni3(dpa)4Cl2及Ni3(dpa)4(NCS)2的拉曼和SERS光譜 33 2.4.2 Ni3(dpa)4(NCS)2在不同電位下的SERS及吸收光譜 33 2.4.3 [Ni3(dpa)4](PF6)3的SERS光譜 34 2.4.4 Ni5(camnpda)4的拉曼及振動圓二色光譜 35 2.4.5 Ni2(TPG)4 & [Ni2(TPG)4](BF4)的拉曼及吸收光譜 36 2.4.6 金屬串錯合物之鎳-鎳金屬鍵結 37 2.4.8 Ni5(tpda)4(NCS)2之拉曼、SERS、ECSERS、TERS光譜 39 2.4.9 鎳金屬串的超低頻拉曼光譜 40 2.5 結果-釕錯合物 40 2.5.1 二釕金屬錯合物之拉曼、SERS光譜與吸收光譜 40 2.5.2 [Ru2M(dpa)4Cl2]0,+1(M = Ni, Cu)之拉曼光譜、SERS光譜 41 2.5.3 Ru2M(dpa)4Cl2(M=Ni, Cu)之電化學吸收光譜 42 2.5.4 Ru2M(dpa)4Cl2(M=Ni, Cu)之ECSERS光譜 42 2.5.5 利用二釕金屬研究金屬奈米粒子的氧化還原反應 43 2.5.6 釕金屬錯合物理論計算結果 44 2.5.7 異核金屬串錯合物之二釕金屬價數 45 2.6 結果-鈷錯合物 46 2.6.1 Co3(dpa)4Cl2及Co3(dpa)4(NCS)2之TERS光譜 46 2.6.2 Co3(dpa)4Cl2之顯微紅外光譜 46 第三章 銥金屬錯合物 106 3.1 研究動機 106 3.1.1 銥金屬錯合物 106 3.1.2 經式轉面式異構化 107 3.1.3 利用拉曼光譜研究液相中磷光材料之困境 107 3.2 實驗目標 111 3.3 實驗方法 113 3.3.1 拉曼光譜架設 113 3.3.2 表面增強拉曼樣品製備 113 3.3.3 Ir(ppy)3@CTAB@SiO2-NH3+製備方法 113 3.3.4 Ir(ppy)3@SiO2-NH3+製備方法 114 3.3.5 光化學異構化 114 3.3.6 熱異構化 114 3.3.7 理論計算 114 3.3.8 超低頻紅外線光譜測量 115 3.4 實驗結果 116 3.4.1 Ir(ppy)3的固體拉曼光譜 116 3.4.2 Ir(ppy)3與Ir(pmb)3的超低頻光譜 116 3.4.3 Ir(ppy)3的SERS光譜 117 3.4.3 監測光化學異構化反應 118 3.4.4 監測熱異構化反應 119 3.5 討論 142 3.5.1 酸性反應 142 3.5.2 熱異構化中間體 142 3.6 銥金屬異構化總結 155 第四章 總結 156 參考文獻 157 附錄 162

    1. (a) Bangcharoenpaurpong, O.; Schomacker, K. T.; Champion P. M. J. Am. Chem. Soc. 1984, 106, 5688–5698. (b) Spiro, T. G. and Strekas, T. C. Proc. Natl. Acad. Sci. 1972, 69, 2622-2626.
    2. Fleischmann, M.; Patrick J. H.; McQuillan A. J. Chem. Phys. Lett. 1974, 26, 163-166.
    3. (a) Jeanmaire, D. L. and Van Duyne, R. P. J. Electroanal. Chem. 1977, 84, 1–20. (b) Albrecht, M. G. and Creighton, J. A. J. Am. Chem. Soc 1977, 99, 5215–5219.
    4. Moskovits, M. Rev. Modern Phys. 1985, 57, 783-826.
    5. Park, J. W.; Shin, D. C.; Park, S. H. Semicond. Sci. Technol., 2011, 26, 034002.
    6. Longhi, Elena; De Cola, Luisa. Iridium (III) complexes for OLED application. In: Iridium (III) in Optoelectronic and Photonics Applications. Chichester, UK: John Wiley & Sons, Ltd, 2017. 205-274.
    7. Hurley, T. J.; Robinson, M. A. Inorg. Chem. 1968, 7, 33-38.
    8. Aduldecha, S.; Hathaway, B. J. J. Chem. Soc., Dalton Trans. 1991, 4, 993-998.
    9. Sheu, J.-T.; Lin, C.-C.; Chao, I.; Wang, C.-C.; Peng, S.-M. Chem. Commun. 1996, 0, 315-316.
    10. Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Pascual, I. J. Am. Chem. Soc. 1997, 119, 10223-10224.
    11. Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Pascual, I. Inorg. Chem. Commun. 1998, 1,1-3.
    12. (a) Cle´rac, R.; Cotton, F. A.; Dunbar, K. R.; Murillo, C. A.; Pascual, I.; Wang, X. Inorg. Chem. 1999, 38, 2655-2657. (b) Berry, J. F.; Cotton, F. A.; Daniels, L. M.; Murillo, C. A. J. Am. Chem. Soc. 2002, 124, 3212-3213.
    13. (a) Cotton, F. A.; Daniels, L. M.;Jordan, G. T., IV; Murillo, C. A. J. Am. Chem. Soc. 1997, 119, 10377-10381. (b) Cotton, F. A.; Murillo, C. A.; Wang, X. Inorg. Chem. 1999, 38, 6294-6297. (c) Cle´rac, R.; Cotton, F. A.; Daniels, L. M.; Dunbar, K. R.; Kirschbaum, K.; Murillo, C. A.; Pinkerton, A. A.; Schultz, A. J.; Wang, X. J. Am. Chem. Soc. 2000, 122, 6226-6236. (d)台大化學系彭旭明實驗室X-ray晶體繞射數據。(e) Cle´rac, R.; Cotton, F. A.; Jeffery, S. P.; Murillo, C. A.; Wang, X. Inorg. Chem. 2001, 40, 1265-1270.
    14. (a) Cle´rac, R.; Cotton, F. A.; Daniels, L. M.; Dunbar, K. R.; Murillo, C. A.; Pascual, I. Inorg. Chem. 2000, 39, 752-756. (b) Cle´rac, R.; Cotton, F. A.; Daniels, L. M.; Dunbar, K. R.; Murillo, C. A.; Zhou, H.-C. Inorg. Chem. 2000, 39, 3414-3417. (c) Berry, J. F.; Cotton, F. A.; Lu, T.; Murillo, C. A.; Roberts, B. K.; Wang, X. J. Am. Chem. Soc. 2004, 126, 7082-7096.
    15. (a) Godycki, L. E.; Rundle, R. E. Acta Cryst. 1953, 6, 487-495. (b) Banks, C. V.; Anderson, S. J. Am. Chem. Soc. 1962, 84, 1485-1486.
    16. Berry, J. F.; Bothe, E.; Cotton, F. A.; Ibragimov, S. A.; Murillo, C. A.; Villagrán, D.; Wang, X. Inorg. Chem. 2006, 45, 4396-4406.
    17. Estiu, G.; Cukiernik, F. D.; Maldivi, P.; Poizat, O. Inorg. Chem. 1999, 38, 3030-3039.
    18. Miskowski, V. M.; Loehr, T. M.; Gray, H. B. Inorg. Chem. 1987, 26, 1098-1108.
    19. Chisholm, M. H.; Christou, G.; Folting, K.; Huffman, J. C.; James, C. A.; Samuels, J. A.; Wesemann, J. L.; Woodruff, W. H. Inorg. Chem. 1996, 35, 3643-3658.
    20. Binamira-Soriaga, E.; Keder, N. L.; Kaska, W. C. Inorg. Chem. 1990, 29, 3167-3171.
    21. Hirao, T. Redox Systems under Nano-Space Control; Springer, 2006.
    22. Berry, J. F.; Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Wang, X. Inorg. Chem. 2003, 42, 2418–2427.
    23. Kiehl P.; Rohmer M. M.; Be´nard M. Inorg. Chem. 2004, 43, 3151−3158.
    24. Lai, S.-H.; Hsiao, C.-J.; Ling, J.-W.; Wang, W.-Z.; Peng, S.-M.; Chen, I.-C. Chem. Phys. Lett. 2008, 456, 181–185.
    25. Tian, Z.-Q.; Ren, B. Annu. Rev. Phys. Chem. 2004, 55, 197–229.
    26. Yu, C.-H.; Kuo, M.-S.; Chuang, C.-Y.; Lee, G.-H.; Hua, S.-A.; Jin, B.-Y.; Peng, S.-M. Chem. Asian J. 2014, 9, 3111–3115.
    27. Huang, G.-C.; Bénard, M.; Rohmer, M.-M.; Li, L.-A.; Chiu, M.-J.; Yeh, C.-Y.; Lee, G.-H.; Peng, S.-M. Eur. J. Inorg. Chem. 2008, 1767-1777.
    28. Chiu, Y.-C.; Ho, K.-Y.; Chen, I-C.; Hua, S.-A.; Cheng M.-C.; Peng S.-M. J. Chin. Chem. Soc. 2014, 61, 1289-1296.
    29. Long, N. N.; Vu, L. V.; Kiem, C. D.; Doanh, S. C.; Nguyet, C. T.; Hang, P. T.; Thien, N. D.; Quynh, L. M. J. Phys.: Conf. Ser. 2009, 187, 012026.
    30. Lee, P. C.; Meisel, D. J. Phys. Chem. 1982, 86, 3391-3395.
    31. Chiu, C.Y.; Chung, P. J.; Lao, K. U.; Liao, C. W.; Huang, M. H. J. Phys. Chem. C 2012, 116, 23757−23763.
    32. Vigderman, L.; Zubarev, E. R. Chem. Mater. 2013, 25, 1450−1457.
    33. Kumar, J.; Thomas, K. G. J. Phys. Chem. Lett. 2011, 2, 610−615.
    34. Tanabe, I.; Egashira, M.; Suzuki, T.; Goto, T.; Ozaki, Y. J. Phys. Chem. C 2014, 118, 10329−10334.
    35. Hezard, T.; Fajerwerg, K.; Evrard, D.; Collière, V.; Behra, P.; Gros, P. Gold J. Electroanal. Chem. 2012, 664, 46−52.
    36. (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648−52. (b) Rassolov, V. A.; Ratner, M. A.; Pople, J. A.; Redfern, P. C.; Curtiss, L. A. J. Comput. Chem. 2001, 22, 976−984. (c) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299−310. (d) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, revision A.01; Gaussian, Inc.: Wallingford, CT, 2009.
    37. Huang, Y.-M.; Lai, S.-H.; Lee, S. J.; Chen, I-C. J. Phys. Chem. C 2011, 115, 2454–2461.
    38. Giovanni, M.; Pumera, M. Electroanalysis 2012, 24, 615−617.
    39. (a) McCarthy, H. J.; Tocher, D. A. Polyhedron 1992, 11, 13−20. (b) Bear, J. L.; Han, B.; Huang, S.; Kadish, K. M. Inorg. Chem. 1996, 35, 3012−3021. (d) Cooke, M. W.; Murphy, C. A.; Cameron, T. S.; Beck, E. J.; Vamvounis, G.; Aquino, M. A. S. Polyhedron 2002, 21, 1235−1244. (e) Gilfoy, H. J.; Robertson, K. N.; Cameron, T. S.; Aquino, M. A. S. Acta Crystallogr., Sect. E: Struct. Rep. Online 2001, E57, m496−m497. (f) Gilfoy, H. J.; Robertson, K. N.; Cameron, T. S.; Aquino, M. A. S. Inorg. Chim. Acta 2002, 331, 330−335. (g) Kadish, K. M.; Phan, T. D.; Giribabu, L.; Shao, J.; Wang, L.-L.; Thuriere, A.; Van Caemelbecke, E.; Bear, J. L. Inorg. Chem. 2004, 43, 1012−1020.
    40. (a) Bai, X.; Gao, Y.; Liu, H. G.; Zheng, L. J. Phys. Chem. C 2009, 113, 17730–17736. (b) Li, G.; Zeng, C.; Jin, R. J. Phys. Chem. C 2015, 119, 11143−11147. (c) Wunder, S.; Lu, Y.; Albrecht, M.; Ballauff, M. ACS Catal. 2011, 1, 908–916. (d) Jiang, Z. J.; Liu, C. Y.; Sun, L. W. J. Phys. Chem. B 2005, 109, 1730-1735. (e) Kästner C.; Thünemann, A. F. Langmuir 2016, 32, 7383–7391. (f) Mistry, H.; Varela, A. S.; Bonifacio, C. S.; Zegkinoglou, I.; Sinev, I.; Choi, Y. W.; Kisslinger, K.; Stach, E. A.; Yang, J. C.; Strasser, P.; Cuenya B. R. Nat. Commun. 2016, 7, 12123. (g) Priecel, P.; Salami, H. A.; Padilla, R. P.; Zhong, Z.; Lopez‐Sanchez, J. A. Chinese Journal of Catalysis 2016, 37, 1619-1650. (h) Lin, C.; Compton, R. G. J. Phys. Chem. C 2017, 121, 2521−2528.
    41. Zhang, Q.; Wang, H. ACS Catal. 2014, 4, 4027−4033.
    42. (a) Tamayo, A. B.; Alleyne, B. D.; Djurovich, P. I.; Lamansky, S.; Tsyba, I.; Ho, N. N.; Bau, R.; Thompson, M. E. J. Am. Chem. Soc. 2003, 125, 7377-7387. (b) Sajoto, T.; Djurovich, P. I.; Tamayo, A.; Yousufuddin, M.; Bau, R.; Thompson, M. E.; Holmes, R. J.; Forrest, S. R. Inorg. Chem. 2005, 44, 7992-8003.
    43. (a) Yang, C.-H.; Fang, K.-H.; Chen, C.-H.; Sun, I. W. Chem. Comm. 2004, 2232-2233. (b) Lee, J.; Chen, H.-F.; Batagoda, T.; Coburn, C.; Djurovich, P. I.; Thompson, M. E.; Forrest, S. R. Nat Mater. 2016, 15, 92-98. (c) Holmes, R. J.; Forrest, S. R.; Sajoto, T.; Tamayo, A.; Djurovich, P. I.; Thompson, M. E.; Brooks, J.; Tung, Y.-J.; D’Andrade, B. W.; Weaver, M. S.; Kwong, R. C.; Brown, J. Appl. Phys. Lett. 2005, 87, 243507.
    44. (a) Karatsu, T.; Nakamura, T.; Yagai, S.; Kitamura, A.; Yamaguchi, K.; Matsushima, Y.; Iwata T.; Hori, Y.; Hagiwara, T. Chem. Lett. 2003, 32, 886-887. (b) Tsuchiya, K.; Ito, E.; Yagai, S.; Kitamura, A.; Karatsu, T. Eur. J. Inorg. Chem. 2009, 2009, 2104-2109.
    45. McDonald, A. R.; Lutz, M.; von Chrzanowski, L. S.; van Klink, G. P. M.; Spek, A. L.; van Koten, G. Inorg. Chem. 2008, 47, 6681-6691.
    46. Deaton, J. C.; Young, R. H.; Lenhard, J. R.; Rajeswaran, M.; Huo, S. Inorg. Chem. 2010, 49, 9151-9161.
    47. (a) Aiello, D.; Talarico, A. M.; Teocoli, F.; Szerb, E. I.; Aiello, I.; Testa, F.; Ghedini, M. New Journal of Chemistry 2011, 35, 141-148. (b) Bhat, R. R.; Fischer, D. A.; Genzer, J. Langmuir 2002, 18, 5640-5643.
    48. Lin, H. H.; Chen, I. C. J. Phys. Chem. C 2015, 119, 26663-26671.
    49. Lang, N.; Tuel, A. Chem. Mater. 2004, 16, 1961-1966.
    50. Lai, S.-H.; Ling, J.-W.; Huang, Y.-M.; Huang, M.-J.; Cheng, C. H.; Chen, I. C. J. Raman Spectrosc. 2011, 42, 332−338.
    51. Tsai, H. R.; Lu, K.Y.; Lai, S.H.; Fan, C. H.; Cheng, C. H.; Chen, I. C. J. Phys. Chem. C 2011, 115, 17163–17174.

    QR CODE