簡易檢索 / 詳目顯示

研究生: 蔡正國
Tsai, Cheng-Kuo
論文名稱: 利用廢面板玻璃製備奈米孔洞材料應用於水中重金屬去除及硼回收之研究
Sustainable valorization of mesoporous material from display panel waste glass for removal of heavy metals and recovery of boron
指導教授: 董瑞安
Doong, Ruey-an
口試委員: 黃志彬
Huang, Chih-Pin
劉志成
Liu, Jhy-Chern
吳劍侯
Wu, Chien-Hou
洪肇嘉
Horng, Jao-Jia
黃耀輝
Huang, Yao-Hui
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 158
中文關鍵詞: 廢面板玻璃、田口實驗設計流體化結晶床吸附劑中孔性奈米材料
外文關鍵詞: TFT-LCD panel waste, Taguchi experimental design, Chemical –oxo precipitation fluidized bed crystallization (COP-FBC), Adsorbents, Mesoporous material
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著地球資源不斷消耗面臨短缺之問題,為達永續環境之目的,藉循環經濟的理念,進行廢棄物的有效資源再利用,以製成各式產品為一重要課題。國內為液晶顯示器(TFT-LCD)主要生產國,佔全球生產量30%以上,TFT-LCD 廣泛應用於電子產品如手機、電視、平板電腦、車用顯示器等,然而這些電子產品仍有壽命之廢棄與製程過程中產生廢料之問題,未來將會有大量廢棄TFT-LCD面板玻璃待處理。TFT-LCD面板主要成分為含有高量氧化矽與氧化鋁等金屬氧化物的玻璃材料,藉此開發高值化低成本技術,以回收面板玻璃材料轉換製備奈米多孔性材料,將應用於水體水質淨化與回收再利用,達到「搖籃到搖籃」的環境永續目標。
    本研究利用田口實驗設計法以L18直交表找出最佳化製程參數,研究顯示熔融溫度(1000 ℃)、廢面板玻璃與碳酸鈉重量比(1:2)、鹽酸濃度(0.1N)、酸洗時間 ( 4小時)、乾燥溫度與時間(110 ℃與12小時) 為最佳製程條件。利用BET 等溫氮氣吸附分析發現廢面板玻璃經由碳酸鈉活化結構形成相分離改質後比表面積高達175 (m2/g),並搭配穿透式電子顯微鏡剖面影像鑑定平均孔洞大小為12 nm,為一中孔性矽酸鋁奈米材料;此材料具有電荷吸引性與高比表面積等特性功能,在酸性pH 3.5環境下對重金屬銅、鋅、鎳、鋇等有高吸附能力分別為64.5、34.0、23.1及105 mg/g;此外,進一步以放量填充管柱進行工業電鍍廢水中鎳重金屬去除試驗,結果顯示吸附能力達18.7 mg/g相當於實驗值,顯示此中孔性奈米材料在工業上為一高效率多孔性吸附劑。
    此中孔性矽酸鋁奈米材料利用其對鋇具有高吸附能力特性,將此材料應用在過氧化流體化結晶(COP-FBC)技術作為結晶載體,能有效從高濃度硼廢水進行回收硼,研究結果顯示中孔性矽酸鋁奈米材料具有高結晶效率達93.4 % 形成硼化鋇氧化物(barium borate),利用掃描式電子顯微鏡發現此載體具有特殊結晶路徑 (1) 此材料表面吸附二價鋇離子形成高結晶親和性、(2)富硼相氫氧化物離子與材料表面二價鋇離結合形成針狀結晶、(3)結晶經由材料孔隙往內層成長、(4)當材料已結晶成長飽和時,會自主架橋繼續長晶形程多層晶殼,達到高結晶特性。最後此結晶材料產物利用高溫X光繞射鑑定可知在600℃具相轉化形成硼化鋇材料,可作為光學玻璃原料再使用。本研究結果顯示利用廢棄面板玻璃可製備獲得新穎中孔性矽酸鋁奈米材料,且確實能有效應用於處理工業廢水中重金屬汙染去除及從高濃度硼廢水回收硼,以利達到永續環境之目標。


    The recycling of the huge amount of thin film transistor liquid crystal display (TFT-LCD) glass wastes has become one of the worldwide environmental issues. Herein, a novel and cost-effective synthesis method for the fabrication of mesoporous aluminosilicate composite from the TFT-LCD waste has been developed to serve as the environmentally benign adsorbent for the removal of metal ions including Cu2+, Zn2+ and Ni2+, and as the carrier for recovery boron in terms of chemical –oxo precipitation fluidized bed crystallization (COP-FBC).
    In this study, optimum parameters for fabrication of mesoporous aluminosilicate nanomaterial from TFT-LCD waste glass was been developed by using Taguchi experimental design technique. It is noteworthy that the parameters including melting temperature, added alkaline agent ratio, acid concentration, leaching time, calcinate temperature and time were optimized at 1000℃, 2 time agents, 0.1 N HCl, 4 hours, 110℃ and 12 hours, respectively. After melting procedure at 1000 C in the presence of Na2CO3 for phase separation, the mesoporous structure of aluminosilicate which had a surface area of 175 m2 g-1 and an average particle size of 12 nm was created. The surface functional groups of tailored mesoporous aluminosilicate nanocomposite (M-ANC) material were negatively charged .The adsorption capacity for Cu2+, Zn2+ ,Ni2+ and Ba2+ were 64.5, 34.0, 23.1 and 105mg g-1, respectively, at pH 3.5. Moreover, the environmental applicability of mesoporous aluminosilicate material is evaluated by column experiment in the presence of real electroplating wastewater. M-ANC can effectively remove Ni2+ in the electroplating wastewater with the adsorption capacity of 18.7 mg g-1.
    On the other hand, the negatively charged surface and mesoporous structure of aluminosilicate material enhance the adsorption of Ba2+ onto surface, which is conducive to the enhancement of recovery of boron species. Moreover, the crystallization ratio of boron by mesoporous aluminosilicate material can be up to 93.4%. The cross-sectional SEM images and high-temperature X-ray diffraction (HT-XRD) results confirm the boron recovery mechanism in which the negatively charged functional group as well as the meso-porosity of mesoporous aluminosilicate material triggers the rapid formation of need-shaped precipitates of barium peroxoborate. The peroxoborate was converted to barium borate after calcination at 600 °C. Results obtained in this study clearly demonstrate the possibility of fabricating environmentally benign mesoporous aluminosilicate adsorbents from TFT-LCD waste to toward metal ion removal and sustainably recover and crystallize boron species from water and wastewater in COP-FBC.

    Content index 中文摘要 .......................................................i Abstract ......................................................iii Abbreviations .................................................v Content index .................................................vii Figure index ..................................................xi Table index ...................................................xvi Chapter 1 .....................................................1 Introduction ..................................................1 1.1 Motivation .............................................2 1.2 Objective ..............................................5 Chapter 2 .....................................................7 Literature Review .............................................7 2.1 Patent Review for Recycling TFT-LCD Waste Glass Technologies ..................................................8 2.2 Removal of Heavy Metal Ions Technologies ...............10 2.2.1 Chemical Precipitation ..................................11 2.2.2 Membrane Filtration .....................................12 2.2.3 Reverse Osmosis .........................................14 2.2.4 Ion Exchange ............................................15 2.2.5 Adsorption ..............................................17 2.3 Removal of Non-metal Boron Technologies ................23 2.3.1 Removal of Boron by Chemical-oxo Precipitation ..........24 2.3.2 Removal of Non-metal Boron by Fluidized-bed Crystallized ..............................................................26 2.4 Fabrication of Mesoporous Material Methods .............30 2.4.1 Synthesis of Mesoporous Silica and Zeolite Methodologies ..............................................................32 2.4.2 Synthesis of Nanopore Glass Methodologies ...............34 2.5 Taguchi Optimization Studies ...........................40 2.6 Experimental Plan ......................................41 Chapter 3 .....................................................43 Experimental Detail ...........................................43 3.1 Introduction ...........................................44 3.2 Experimental Section ...................................44 3.2.1 Materials ............................................44 3.2.2 Fabrication of Mesoporous Aluminosilica ..............45 3.3 Characterization Techniques ............................48 3.3.1 Field-Emission Scanning Electron Microscopy ..........48 3.3.2 Field-Emission Transmission Electron Microscopy ......48 3.3.3 X-ray Diffraction ....................................48 3.3.4 High-temperature X-ray Diffraction ...................49 3.3.5 Raman Spectroscopy ...................................49 3.3.6 X-ray photoelectron spectroscopy analysis (XPS) ......49 3.3.7 Fourier Transformation Infrared (FTIR) ...............50 3.3.8 BET analysis .........................................50 3.3.9 Zeta Potential .......................................50 3.4 The quantity of metal oxide components .................51 3.5 Isothermal and Kinetics model ..........................51 Chapter 4 .....................................................54 Mesoporous Aluminosilicate Nanomaterial Optimization ..........54 Abstract ......................................................55 4.1 Introduction ...........................................56 4.2 Experimental design and statistical analysis ...........57 4.3 Results and discussion .................................58 4.3.1 Signal to noise ratio (S/N) analysis .................58 4.3.2 ANOVA analysis of variance for S/N ...................61 4.4 Summary ................................................62 Chapter 5 .....................................................64 Mesoporous Aluminosilicate Composite for Adsorption of Heavy Metal ions ..........................................................64 5.1 Introduction ...........................................65 5.2 Experimental procedure .................................68 5.2.1 Material and characterization ........................68 5.2.2 Fabrication of M-ANC .................................68 5.2.3 Adsorption of metal ions onto aluminosilicate materials ..............................................................68 5.2.4 Column experiment of adsorption from electroplating wastewater ....................................................69 5.3 Results and discussion .................................71 5.3.1 Surface characterization of aluminosilicate nanocomposites ................................................71 5.3.2 The pore texture of aluminosilicate materials ........79 5.3.3 Adsorption of metal ions by M-ANC ....................82 5.3.4 XPS analysis of adsorbent after the adsorption of metal ions ..........................................................94 5.3.5 Column experiment for Ni2+ adsorption from electroplating wastewater ....................................................97 5.4 Summary ................................................99 Chapter 6 .....................................................102 Development of Mesoporous Aluminosilicate Carriers for Boron Recovery and Crystallization ..................................102 6.1 Introduction ...........................................103 6.2 Experimental procure ...................................107 6.2.1 Material and characterization ........................107 6.2.2 Preparation of MAS ...................................107 6.2.3 Adsorption of Barium Ions by MAS .....................107 6.2.4 COP-FBC Experiments ..................................108 6.3 Results and discussion .................................110 6.3.1 Surface Characterization of Silica Sand and MAS ......110 6.3.2 The Pore Texture of Aluminosilicate Materials ........114 6.3.3 Adsorption of Ba2+ by MAS ............................117 6.3.4 Boron Recovery by COP-FBC ............................119 6.3.5 Identification of Peroxoborate Precipitates ..........125 6.3.6 The Crystallization Mechanism ........................128 6.4 Summary ................................................132 Chapter 7 .....................................................134 Conclusion ....................................................134 7.1 Overall Conclusion .....................................135 7.1 Recommendation .........................................137 References ....................................................139   Figure index Figure2. 1 Different approaches for the recovery of glass from waste TFT- LCD .....................................9 Figure2. 2 Removal mechanism by using membrane. (a) Size exclusion/steric hindrance mechanism by low pressure membrane; (b) adsorption by low pressure membrane; (c) size exclusion/steric hindrance mechanism by TFC membrane and; (d) Donnan exclusion/charge–charge repulsion by TFC membrane...........................14 Figure2. 3 Anion ion exchange mechanism of adsorption Cr ( VI) by EPIDMA/ D30164 .....................................16 Figure2. 4 Cation ion exchange mechanism of adsorption heavy metal as (a,b,c) coordination bonding, (e) chelating interaction between the electron donor species .....17 Figure2. 5 Surface functional groups of carbon-based adsorbents for removal of heavy metal .........................18 Figure2. 6 Schematics of adsorption mechanisms of heavy metals onto carbon-based adsorbents70......................19 Figure2. 7 Mechanisms of heavy metal ions Removal by silica- based adsorbent72.........................................20 Figure2. 8 Reactions between boric acid, hydrogen peroxide, perborates, and protons, and their stability constants ..............................................................25 Figure2. 9 Simulated species distribution in boric acid/hydrogen peroxide system at different pH.....................26 Figure2. 10 Metastable zone for crystallization83 .............27 Figure2. 11 Precipitation mechanism in the fluidized-bed reactor with seed material85 ..............................28 Figure2. 12 Proposed mechanisms of metal phosphate crystallization in FBHC86 .........................................30 Figure2. 13 Schematics of the surface functionalization of SBA-15, MCM-41, MCM-48 and KIT-6. .........................32 Figure2. 14 Schematic illustration of the templated synthesis of a) a representative zeolite, b) a representative form of mesoporous silica...............................34 Figure2. 15 Synthesis of porosification of nanopore glass methodologies .....................................36 Figure2. 16 Synthesis of Zeolite and mesoporous silica (a) bottom –up approach, mesoporous nanomaterial from TFT-LCD waste panel glass (b) Top-down approach............39 Figure2. 17 Schematic representation displaying synthesis and application of M-ANC and MAS nanomaterial for adsorption heavy metal and recovery boron .........42 Figure 3.1 Fabrication of mesoporous aluminosilica nanomaterial from NWTG procedures................................45 Figure 4.1 The effect of (a) melting temperature, (b) alkaline agent ratio, (c) acid concentration (N), (d) acid leaching time(hours), (e) calcinate temperature and (f) calcinate time( hours) on the signal-to noise(S/N) ratio for fabricate of mesoporous aluminosilica nanomaterial .......................................59 Scheme 5.1 Schematic illustration of the fabrication and activation of mesoporous aluminosilicate nanocomposites (M-ANC) for the adsorption of metal ions ...........67 Scheme 5. 2 Graphic abstract illustration of the fabrication and activation of mesoporous aluminosilicate nanocomposites (M-ANC) for the removal of nickel ions from electroplating ...............................101 Figure 5.1 SEM images of (a) original waste material (NWTG) and (b) activated aluminosilicate material (M-ANC) ......72 Figure 5.2 FE-TEM image of activated aluminosilicate material (M- ANC) (a) cross-sectional and (b) particle size distribution of M-ANC................................73 Figure 5.3 XRD patterns of the TFT-LCD glass before (NWTG) and after (M-ANC) the alkaline treatment at 1000 C in the presence of Na2CO3...................................74 Figure 5.4 FTIR spectra of the TFT-LCD glass before (NWTG) and after (M-ANC) the alkaline treatment at 1000 C in the presence of Na2CO3...................................76 Figure 5.5 X-ray photoelectron spectroscopy (XPS) analysis of the original (NWTG) and activated (M-ANC) aluminosilicate materials. (a) Full scan survey and deconvoluted (b) Na 1s and (c) B 1s peaks ...............................78 Figure 5.6 The N2 adsorption-desorption isotherm and pore size distribution of (a) the original (NWTG) and (b) activated aluminosilicate material (M-ANC)...........80 Figure 5.7 (a) Adsorption capacity of mesoporous M-ANC materials toward heavy metal ion adsorption and (b) isoelectric point of original NWTG and activated M-ANC materials as a function of pH. The initial concentration of metal ions including Cu2+, Zn2+ and Ni2+ is 100 mg L-1 and adsorbent dosage is 1 g L-1..........................83 Figure 5.8 Adsorption isotherms with fitted Langmuir model of Cu2+, Ni2+ and Zn2+ onto M-ANC (a) and NWTG (b) at pH 3.5. The initial concentration of metal ion for adsorption kinetic is 100 mg L-1 and the adsorbent dosage is 1 g L-1...................................85 Figure 5.9 (a) Langmuir and (b)Freundlich adsorption isotherms of metal ions onto M-ANC ..............................86 Figure 5.10 Adsorption kinetic curves with fitted pseudo-second- order of Cu2+, Ni2+ and Zn2+ at pH 3.5. The initial concentration of metal ion for adsorption kinetic is 100 mg L-1 and the adsorbent dosage is 1 g L-1.....92 Figure 5. 11 The (a) pseudo-first-order, (b) pseudo-second-order kinetics and (c) intra-particle diffusion model of adsorption of metal ions onto M-ANC nano-adsorbent. ...................................................93 Figure 5.12 (a) XPS spectra of M-ANC before and after the adsorption of Cu2+, Zn2+ and Ni2+, (b) Cu 2p for M- ANC_Cu; (c) Zn 2p for M-ANC_Zn and (d) Ni 2p for M- ANC_Ni ............................................95 Figure 5. 13 (a) The XPS O 1s spectra of M-ANC, M-ANC_Cu, M- ANC_Zn and M-ANC_Ni and the deconvolution of O 1s peak after the adsorption of (b) Cu, (c) Zn, and (d) Ni ions...............................................97 Figure 5. 14 The breakthrough curve of Ni2+ adsorption from electroplating wastewater by 50 g M-ANC composite in a column with bed volume of 150 mL at pH 3.5 ± 0.2. The initial Ni2+ concentration is 30 mg L-1 and the flow rate is 15 mL min -1 ..............................99 Scheme 6. 1 Illustration of the crystallization mechanism for the recovery of boron species using mesoporous aluminosilicate (MAS) as the carrier in chemical oxo- precipitation fluidized bed crystallization (COP-FBC) reactor. Photograph courtesy of ‘Cheng-Kuo Tsai’. Copyright 2019.....................................106 Scheme 6. 2 Conceptual model of the crystallization of barium peroxoborate in COP-FBC reactor using silica sand and mesoporous MAS nanomaterials as the carriers.......131 Figure 6. 1 Schematic illustration of experimental set-up of the chemical oxo-precipitation fluidized-bed crystallization (COP-FBC)..........................109 Figure 6. 2 The SEM images of (a) silica sand and (b) MAS nanomaterial, (c) cross sectional FE-TEM image of MAS, and (d) particle size distribution of MAS..........111 Figure 6. 3 FTIR spectra of silica and MAS (a) and (b) the waste TFT-LCD material ..................................112 Figure 6. 4 XRD patterns of TFT-LCD glass before and after the activation treatment...............................113 Figure 6. 5 XPS spectra of silica and MAS nanomaterials derived from the waste TFT-LCD ............................114 Figure 6. 6 N2 adsorption-desorption isotherm (a) and pore size distribution (b) of the commercial silica sand and as- prepared MAS nanomaterials derived from the waste TFT- LCD. Insets in Figure (a) and (b) are the enlarged figures of isotherm and pore size distribution of silica sand, respectively .........................116 Figure 6. 7 Adsorption isotherms and the fitted Langmuir model of silica sand and MAS for Ba2+ adsorption ...........118 Figure 6. 8 Comparison of the boron recovery performance of silica sand and MAS in terms of (a) removal efficiency, (b) crystallization ratio, and (c) effluent concentration as the function of reaction time in the COP-FBC process at pH 10.5.................................121 Figure 6. 9 COP-FBC system of commercial silica-sand (a) and MAS (b) carrier for recovery boron ....................122 Figure 6. 10 Raman spectra of precipitates produced from the recovery of boron in the presence of (a) silica sand and (b) MAS as a function of reaction time .......126 Figure 6. 11 HT-XRD patterns for crystalized products by MAS carrier in COP- FBC after 216 h of incubation.....128 Figure 6. 12 The cross-sectional SEM images of (a-d) MAS during boron recovery at various reaction times..........129 Figure 6. 13 The EDS spectra and SEM image (inset) of the mesoporous aluminosilicate (MAS) carrier-based crystallization products..........................130 Figure 6. 14 The cross-sectional SEM images of (a-d) silica sand during boron recovery at various reaction times ...130 Table index Table2. 1 Different techniques for removing heavy metals from water/ wastewater ...................................22 Table2. 2 Relation between pore volume and surface area at different cooling condition .........................35 Table 3. 1 Experimental parameters and their levels ...........46 Table 3. 2 Modified orthogonal L18 (21*35) array ..............47 Table 4. 1 Standard orthogonal arrays of 18 different groups following Taguchi’s suggestion .....................60 Table 4. 2 Analysis of variance for S/N ratios, using adjusted SS for test ...........................................62 Table 5. 1 Characteristics of the electroplating wastewater collected from Changhua Coastal Industrial Park, Taiwan .....................................................70 Table 5. 2 Compositions of dominant constituents in NWTG and M-ANC .....................................................76 Table 5. 3 The surface area, pore volume and pore size of the TFT- LCD panel waste before (NWTG) and after (M-ANC) the activation process .................................81 Table 5. 4 Isotherm parameters of copper, zinc and nickel adsorption onto the M-ANC material .................87 Table 5. 5 Electronegativity of metal ion and the first stability constants for metal hydroxide formation ............87 Table 5. 6 Comparison of the adsorption capacity of M-ANC toward metal ion adsorption with reported data using a wide variety of materials as the adsorbents .............90 Table 5. 7 Kinetics model constant for the adsorption of Cu(II), Zn(II) and Ni(II) ions onto M-ANC nanocomposite ....94 Table 6. 1 The Experimental parameter of the commercial silica sand and mesoporous aluminosilicate (MAS) carrier seeds ..............................................109 Table 6. 2 The specific surface area and pore texture of the commercial silica sand and mesoporous aluminosilicate (MAS) carrier seeds ................................115 Table 6. 3 Isothermal parameters of Ba2+ adsorption onto the silica sand and MAS materials ......................118 Table 6. 4 Comparison of the recovery efficiency and crystallization ratio of boron using COP-based treatment processes ................................124

    References
    1. Binnemans, K., Jones, P.T., B. Blanpain, Van Gerven, T., Yang, Y., Walton, A., Buchert, M., Recycling of rare earths: a critical review. J. Clean. Prod. 2013, 51, 1-22.
    2. Savvilotidou, V., Hahladakis, J.N., Gidarakos, E., Determination of toxic metals in discarded Liquid Crystal Displays (LCDs), Resour. Conserv. Recycl. 2014, 92, 108-115.
    3. Cui, J., Zhang, L., Metallurgical recovery of metals from electronic waste: A review. J. Hazard. Mater. 2008,158, 228-256.
    4. Amato, A., Rocchetti, L., Beolchini, F., Environmental impact assessment of different end-of-life LCD management strategies, Waste Manag. 2017, 59, 432-441.
    5. Fan, C.S., Li, K.C., Production of insulating glass ceramics from thin film transistor-liquid crystal display waste glass and calcium fluoride sludge. J. Clean. Prod. 2013,57, 335-341.
    6. Tsujiguchi, M., Kobashi, T., Utsumi, Y., Kakimori, N., Nakahira, A., Synthesis of zeolite a from aluminoborosilicate glass used in glass substrates of liquid crystal display panels and evaluation of its cation exchange capacity. J. Am. Ceram. Soc. 2014, 97, 114-119.
    7. Jang, H., Jeon, S., So, H., So, S., Properties of different particle size of recycled TFT-LCD waste glass powder as a cement concrete binder. International J. Precis. Eng. Manuf. 2015, 16, 2591-2597.
    8. Lee, C. T., Preparation of spherical foamed body with function of media for waste water treatment by using waste LCD glass. Journal of Industrial and Engineering Chemistry. 2014, 20, 3089-3095.
    9. Ibrahima, H. S., Ammara, N. S., Abdel Ghafara, H. H., Farahat, M., Adsorption of Cd(II), Cu(II) and Pb(II) using recycled waste glass: equilibrium and kinetic studies. Desalination Water Treat. 2012, 48, 320-328.
    10. Peterlla, A., Petruzzelli, V., Ranieri, E., Catalucci, V., Petruzzell, D., Sorption of Pb(II), Cd(II), and Ni(II) from single- and multi-metal solutions by recycled waste porous glass. Chem. Eng. Commun. 2016, 203, 940-947.
    11. Khoder, M. I., Hassan, S. K., El-Abssawy, A. A., An evaluation of loading rate of dust, Pb, Cd and Ni and metals mass concentration in the settled surface dust in domestic houses and factors affecting them. Indoor Built Environ. 2010, 19, 391-399.
    12. Kazi, T. G., Jalbani, N., Baig, J. A., Arain, M. B., Afridi, H. I., Jamali, M. K., Shah, A. Q., Memon, A. N., Evaluation of toxic elementsin baby foods commercially available in Pakistan. Food Chem. 2010,119, 313-1317.
    13. Quintelas, C., Rocha, Z., Silva, B., Fonseca, B., Figueiredo, H., Tavares, T., Removal of Cd(II), Cr(VI), Fe(III) and Ni (II) from aqueous solutions by an E. coli biofilm supported on kaolin. Chem. Eng. J. 2009, 149, 319, 324.
    14. Oyaro, N., Juddy, O., Murago, E.N.M., Gitonga, E., The contents of Pb, Cu, Zn and Cd in meat in Nairobi, Kenya. Int. J. Food Agric. Environ. 2007, 5, 119-121.
    15. Paulino, A.T., Minasse, F.A.S., Guilherme, M.R., Reis, A.V., Muniz, E.C., Nozaki, J., Novel adsorbent based on silkworm chrysalides for removal of heavy metals from wastewaters. J. Colloid Interface Sci. 2006, 301, 479-487.
    16. Borba, C.E., Guirardello, R., Silva, E.A., Veit, M.T., Tavares, C.R.G. Removal of nickel (II) ions from aqueous solution by biosorption in a fixed bed column: experimental and theoretical breakthrough curves. Biochem. Eng. J. 2006, 30, 184-191.
    17. Boundy, T., Boyton, M., Taylor, P., Attrition scrubbing for recovery of indium from waste liquid crystal display glass via selective. J. Clean. Prod. 2017, 154, 436-444.
    18. Burakova, A. E. , Galunina, E. V. , Burakovaa, I. V., Kucherovaa, A. E., Agarwalb, S., Tkacheva, A. G., Gupta, V. K., Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotox. Environ. Safety. 2018,148, 702–712.
    19. Dána, E., Adsorption of heavy metals on functionalized-mesoporous silica: A review. Micropor. Mesopor. Mater. 2017, 247, 143-157.
    20. Doong, R.A., Tsai, C.W., Synergistic effect of Cu adsorption on the enhanced photocatalyst degradation of bisphenol A by TiO2/titanate nanotubes composite. J. Taiwan Inst. Chem. Eng., 2015, 57, 69-76.
    21. Hernandez-Morales, V., Nava, R., Acosta-Silva, Y.J., Macias-Sanchez, S.A., Perez-Bueno, J. J., Pawelec, B., Adsorption of lead (II) on SBA-15 mesoporous molecular sieve functionalized with–NH2 groups. Micropor. Mesopor. Mater. 2012, 160, 133–142.
    22. Cashin, V. B., Eldridge, D. S., Kingshott, P., Yu, A., Distinguishing surface sites involved in the adsorption of lead onto sinapin aldehyde-functionalized mesocellular foam mesoporous silica. Colloid Surf. A. 2018,552,153–160.
    23. Mousavi, S. J., Parvini, M., Ghorbani, M., Experimental design data for the zinc ions adsorption based on mesoporous modified chitosan using central composite design method. Carbohyd. Polym. 2018,188, 197–212.
    24. Bodzzek, M. The Removal of Boron from the Aquatic Environment- State of the Art. Desal. Water Treat. 2016, 57(3), 1107-1131.
    25. Wolska, J.; Bryjak, M. Method for Boron Removal from Aqueous Solution - A review. Desalination 2013, 310, 18-24.
    26. Fang, Y.; Wang, X. Metal-Free Boron-Containing Heterogeneous Catalysts. Angew. Chem. Int. Ed. 2017, 56, 15506-15518.
    27. Hu, J.; Pu, Y.; Ueda, M.; Zhnag, X.; Wang, L. Charge-Aggregate Induced (CAI) Reverse Osmosis Membrane for Seawater Desalination and Boron Removal. J. Membr. Sci. 2016, 520, 1-7.
    28. Guan, Z.; Lv, J.; Bai, P.; Guo, X. Boron removal from aqueous solution by dasorption –A review. Desalination 2016, 378. 29-37.
    29. Amato,A.; Beolchini, F. End of life liquid crystal displays recycling: A patent review. J. Environ. Manag. 2018, 225, 1–9.
    30. Wu, K.-H., A Recycling Method for Glass Substrate of Liquid Crystal Display Panel.2009, TW200916878 Patent.
    31. Kim, S. D., Ju, M. H., Method for a Selective Recycling of TFT-LCD Glass Substrate Using Chemicals Reaction Dip Bath Type. 2006, KR100640204 Patent.
    32. Kim, S. D., Method for Selectively Recovering TFT-LCD Glass Substrate by Using Deep Pool Chemical Reaction.2008, CN101234386 Patent.
    33. Wang, Y., Liquid Crystal Display Recycling Method.2014, CN103506374 Patent.
    34. Lee, J. J.,Method of Material Recycling for LCD Panel Waste.2009, KR100886684 Patent.
    35. Kim, K. D., Kim, K. C., Glass Batches Containing Waste Glass for Preparing Container Glasses.2017, KR20170041961 Patent.
    36. Lee, S. H., Park, Chan, K., Lee, H. K., Jeong, J. H., Kim, H. J., Kim, J. Y., Hong, M., Lee, H. G., Lee, S. H., Lim, J. Y., Lee, E. H., Seo, H. S., Process of Producing Cement Clinker and Cement Using LCD Glass, and Cement Produced the Process .2008, KR100862917 Patent.
    37. Lin, K.-L., Method for Manufacturing Environmental Friendly Water-permeable Brick by Using Waste TFT-LCD Glass and the Products Thereof. 2011, TW201129745 Patent.
    38. Lin, K.-L., Wu, H.-H., TFT-LCD Waste Glass Produced High Pressure Brick and Method for Producing the Same.2012, TW201215579 Patent.
    39. Lin, K.-L., Cheng, C.-J., Environmental-friendly Red Bricks Made by Recycling LCD Waste Glass and the Manufacturing Method Thereof. 2014, TW201404490 Patent.
    40. Kim, K. D., Porcelain Batch Compositions Containing Alkali Free Aluminoborosilicate Display Cullet or Waste Glass. 2014, KR101375162 Patent.
    41. Lin, K.-L., Shiu H.-S., Environmental-friendly Thermal Insulation Board Made by Recycling LCD Waste Glass and the Manufacturing Method Thereof. 2014, TW201404983 Patent.
    42. Choi, S. P., Choi, K. In., Method for Manufacturing Expandable Artificial Media for Water Treatment by Recycling Waste LCD Glass and Waste Bottle Glass Generated from Waste Electric and Electronic Products. 2016, WO2016175456 Patent.
    43. Kim, K.-D., Kim, K.-C., Glass Batch Composition Having Waste Glass as Raw Material and Used for Soda-lime Borosilicate-based Sound Absorbing and Heat Insulating Material. 2016, WO2016068631 Patent.
    44. Bashir, A., Malik, L A., Ahad, S., Manzoor, T., Bhat, M. A., Dar, G. N., Pandlth, A. H., Removal of heavy metal ions from aqueous system by ion-excahnge and biosorption methods. Environ. Chem. Letter. 2019, 17, 729-754.
    45. Chen, Q., Yao, Y., Li, X., Lu, J., Zhou, J., Huang, Z., Comparison of heavy metal removals from aqueous solution by chemical precipitation and characteristics of precipitates, J. Water Process Eng., 2018, 26, 289-300.
    46. Abdullah, N., Yusof, N., Lau, W. J., Jaafar, J., Ismail, A. F., Recent trends of heavy metal removal from water/wastewater by membrane technologies. J. Indus. Engine. Chem. 2019, 76, 17-38.
    47. Thaci, B. S., Gashi, S. T., Reverse osmosis removal of heavy metals from wastewater effluents using bio-waste materials pretreatment. Pol. J. Environ, Stud., 2019, 28, 337-341.
    48. Nekouei, R. K., Pahlevani, F., Assefi, M., Maroufi, S., Selective isolation of heavy metal from spent electronic waste solution by macroporous ion-exchange resins. J. Hazard. Mater. 2019, 371, 389-396.
    49. Abukhadra, M. R., Bakry, B. M., Adlii A., Yakout, S. M., Facile conversion of kaolinite into clay nanotubes (KNTs) of enhanced adsorption properties for toxic heavy metal ( Zn2+, Cd2+, Pb2+ and Cr6+) from water. J. Hazard. Mater. 2019, 374, 296-308.
    50. Carolin, C. F., Kumar, P. S., Saravanan, A., Joshiba, G. J., Naushad, M., Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. J. Environ. Chem. Engin., 2017, 5, 2782-2799.
    51. Huisman, J.L., Schouten, G., Schultz, C., Biologically produced supplied for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry. Hydrometallurgy, 2006, 83, 106-113.
    52. Baltpurvins, K.A., Burns, R.C., Lawrance, G.A., Stuart, A.D., Effect of electrolyte composition on zinc hydroxide precipitation by lime. Water Res. 1997, 31, 973-980.
    53. Wang, L.K., Vaccari, D.A., Li, Y., Shammas, N.K., Chemical precipitation. In: Wang, L.K., Hung, Y.T., Shammas, N.K. (Eds.), Physicochemical Treatment Processes, New Jersey, 2004, 3, 141–198.
    54. Zhou, J. Z., Wu, Y. Y., Liu, C., Orpe, A., Liu, Q., Xu, Z. P., Qian, G. R., Qiao, S. Z., Effective self-purification of polynary metal electroplating wastewaters through formation of layered double hydroxides. Environ. Sci. Technol. 2010, 44, 8884–8890.
    55. Ghosh, P., Samanta, A.N., Ray, S., Reduction of COD and removal of Zn2+ from rayon industry wastewater by combined electro-Fenton treatment and chemical precipitation. Desalination, 2011, 266, 213–217.
    56. Fu, F., Wang,Q. Removal of heavy metal ions from wastewater; A review. J. Environ. Manage. 2011, 92, 407-418.
    57. Persson, I., Hydrated metal ions in aqueous solution: How regular are their structure? Pure Appl. Chem. 2010, 10, 1901-1917.
    58. Murthy, Z.V.P., Chandhari, L.B., Separation of bindary heavy metals from aqueous solutions by nanofiltration and characterization of the membrane using Spiegler-Kedem model. Chem. Eng. J. 2009, 150, 181-187.
    59. Maher, A., Sadeghi, M., Moheb, A., Heavy metal elimination from drinking water using nanofiltration membrane technology and process optimization using response surface methodology. Desalination, 2014, 352, 166-173.
    60. Ozaki, H., Sharma, K. Saktaywin, W., Performance of an ultra-low-pressure reverse osmosis membrane (ULPROM) for separating heavy metal: effects of interference parameters. Desalination, 2002, 144,287-294.
    61. Mohsen-Nia, M., Montazeri, P., Modarress, H., Removal of Cu2+ and Ni2+ from wastewater with a chelating agent and reverse osmosis processes. Desalination, 2007,217, 276-281.
    62. Neumann, S., Fatula, P., Principles of ion exchange in wastewater treatment. Asian Water, 2009, 14-19.
    63. Silva, R. A., Hawboldt, K., Zhang, Y., Application of resins with functional groups in the separation of metal ions/species – a review. Mineral processing and extractive metallurgy review. 2018, 39, 395-413.
    64. Zang, Y., Yue, Q., Kan, Y., Zhang, L., Gao, B., Research on adsorption of Cr(Ⅵ) by Poly-epichlorohydrin-dimethylamine (EPIDMA) modified weakly basic anion exchange resin D301. Ecotoxic. Environ. Safely. 2018, 161, 467-473.
    65. Lawrance, G. A., Introduction to Coordination Chemistry Chichester, UK: John Wiley & Sons. 2013.
    66. Chen, Y., Zhao, W., Zhang, J., Preparation of 4-vinylpyridine (4VP) resin and its adsorption performance for heavy metal ions. RSC Adv. 2017, 7, 4226-4236.
    67. Zhang, Y., Bian, T., Zhang, Y., Zheng, X., Li, Z., Chelation resin efficient removal of Cu(II), Cr(III), Ni (II) in electroplating wastewater. Fullerenes Nanotubes and Carbon Nanostructures, 2018, 26, 1-12.
    68. Ali, I., New generation adsorbents for water treatment. Chem. Rev. 2012, 112, 5073-5091.
    69. Fu, F., Wang, Q., Removal of heavy metal ions from wastewaters: a review. J. Environ. Manage. 2011, 92, 407-418.
    70. Yang, X., Wan, Y., Zheng, Y., He, F., Yu, Z., Huang,J., Wang, H., Gao, B., Surface functional groups of carbon-based adsorbents and their roles un the removal of heavy metals from aqueous solution: A critical review. Chem. Eng. J. 2019, 366, 608-621.
    71. Hong, M., Yu, L., Wang, Y., Zhang, J., Chen, Z., Dong, L., Zan. Q., Li, R., Heavy metal adsorption with zeolites: The role of hierarchical pore architecture. Chem. Eng. J., 2019, 359, 363-372
    72. Diagboya, P. N. E., Dikio, E. D., Silica-based mesoporous materials; emerging designer adsrobents for aqueous pollutants removal and water treatment. Micro. Meso. Mater,. 2018,266, 252-267.
    73. Ahmed, M.J.K., Ahmaruzzaman, M., A review on potential usage of industrial waste materials for binding heavy metal ions from aqueous solutions. J. Water Process Eng., 2016, 10, 39-47.
    74. Ruihua, L., Lin, Z., Tao, T., Bo, L. Phosphorus removal performance of acid mine drainage from wastewater. J. Hazard. Mater. 2011, 190, 669–676.
    75. Farooq, U., Kozinski, J.A., Khan, M.A., Athar, M., Biosorption of heavy metal ions using wheat based biosorbents − A review of the recent literature. Bioresour. Technol. 2010, 101, 5043–5053.
    76. Tang, Y. P., Luo, L., Tong, Z., Chung, T. S., Recent advances in membrane materials and technologies for boron removal. J. Membrane Sci. 2017, 541, 434-446.
    77. Guan, Z., Lv, J., Bai, P., Guo, X., Boron removal from aqueous solution by adsorption-A review. Desalination, 2016, 383, 29-37.
    78. Lin, J. Y., Shin, Y.J., Chen, P.Y., Huang, Y. H., Precipitation recovery of boron from aqueous solution by chemical oxo-precipitation at room temperature. Applied Energy, 2016, 164, 1052-1058.
    79. Wang B, Guo X, Bai P. Removal technology of boron dissolved in aqueous solutions – a review. Colloid Surface A, 2014, 444, 338-344.
    80. Bilgin Simsek E, Beker U, Senkal BF. Predicting the dynamics and performance of selective polymeric resins in a fixed bed system for boron removal. Desalination, 2014, 349, 39-50.
    81. Vu, X., Lin, J. Y., Huang, Y. H., Reclaiming boron as calcium perborate pellets from synthetic wastewater by integrating chemical oxo-precipitation within a fluidized-bed crystallizer. ACS sustainable Chem. Eng. 2018, 6, 4784-4792.
    82. Chen, C. S., Shih, Y. J., Huang, Y. H., Remediation of lead (Pb (II)) wastewater through recovery of lead carbonate in a fluidized-bed homogeneous crystallization (FBHC) system. Chem. Eng. J., 2015, 279, 120-128.
    83. Ren, X., Qi, J., Wu, W., Yin, Z., Li, T., Lu, Y., Development of carrier-free nanocrystals of poorly water-soluble drugs by exploring metastable zone of nucleation. Acta Pharmaceutica Sinica B, 2019, 9, 118-127.
    84. Huang, C., Pan, J. R., Lee, M. Yen, S., Treatment of high-level arsenic-containing wastewater by fluidized bed crystallization process, J. Chem, Tech. Biotech. 2007, 82, 289-294.
    85. Garea, R. A. A., Fernández, I., Irabien, A., Resources reduction in the fluorine industry removal and recovery in a fluidized bed crystallizer, Clean Techn. Environ. Policy, 2008, 10, 203-210.
    86. Shih, Y. J., Chang, H.C., Huang, Y. H., Reclamation of phosphorus from aqueous solution as alkaline earth metal phosphate in a fluidized-bed homogeneous crystallization, J. TW. Inst. Chem. Eng., 2016, 62, 177-186.
    87. Sing, K. S. W., Reporting physisorption data for gas/soild systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 1982, 54, 2201-2218.
    88. Gibson, L.T., Mesosilica materials and organic pollutant adsorption: part B removal from aqueous solution, Chem. Soc. Rev. 2014, 43, 5173-5182.
    89. Dou, B., Hu, Q., Li, J., Qiao, S., Hao, Z., Adsorption performance of VOCs in ordered mesoporous silicas with diffenert pore structures and surface chemistry, J. Hazard Mater. 2011, 186, 1615–1624.
    90. Xu. Q., Nanopoeous material synthesis and applications, CRC press, 2013, 10, 289-318.
    91. Valtchev,V., Tosheva, L., Porous nanosized particles: preparation, properties and application, Chem. Rev., 2013, 113, 6734-6760.
    92. Lehman, S. E., Larsen, S. C., Zeolite and mesoporous silica nanomaterials: greener synthesis, environmental applications and biological toxicity, Environ. Sci.: Nano, 2014, 1, 200-213.
    93. Lin, Y.S., Haynes, C. L., Synthesis and Characterization of Biocompatible and Size-Tunable Multifunctional Porous Silica Nanoparticles Chem. Mater., 2009, 21, 3979–3986.
    94. Gerardin, C., Reboul, J., Bonne, M., Lebeau, B., Ecodesign of ordered mesoporous silica materials Chem. Soc.Rev., 2013, 42, 4217–4255.
    95. Tomozawa, M., In treatise on material science and technology, ed. Tomozawa,T. and Doremus, R. H., Academic Press In., New York, 1979, 17, 71.
    96. Mazurin, O. V., Porai-Koshits, E. A., Phase separation in glass, North Holland, Tokyo, 1984.
    97. Yazawa, T., Tanaka, H., Eguchi, H.,Nagasawa, H.,Matsuba, N., Einishi, T., Precipitation of colloidal silica and pore size distribution in high silica porous glass, J. Non-Cryst. Solids. 1984, 65, 301-309.
    98. Taguchi G, Konishi S ,Taguchi Methods, orthogonal arrays and linear graphs, tools for quality American supplier institute, American Supplier Institute, 1987, 8-35.
    99. Zolfaghari, G., Esmaili-Sari, A., Anbia, M., Younesi, H.,Amirmahmoodi, S., Ghafari-Nazari, A., Taguchi optimization approach for Pb(II) and Hg(II) removal from aqueous solutions using modified mesoporous carbon. J. Hazard. Mater. 2011, 192, 1046–1055.
    100. Fernández-López, J. A., Angosto, J. M., Roca, M. J., Miñarro, M. D., Taguchi design-based enhancement of heavy metals bioremoval by agroindustrial waste biomass from artichoke, Sci. Total Environ. 2019, 653, 55-63.
    101. Foster, W.T. Basic Taguchi design of experiments, National Association of Industrial Technology Conference, Pittsburgh, PA, 2000
    102. Kaya, G. G., Yilmaz, E., Deveci, H., A novel silica xergel sunthesized from volcanic tuff as an adsorption for high-efficient removal of methylene blue: parameter optimization using Taguchi experimental design, J. Chem. Technol. Biotechnol. 2019, 94, 2729-2737.

    103. Tsujiguchi, M.; Kobashi, T.; Kanbara, J.; Utsumi, Y.; Kakimori, N.; Nakahira, A. Synthesis of FAU Zeolite from Aluminoborosilicate Glass and Elution Behavior of Glass Components. J. Ceram. Soc. Jpn. 2014, 122(1), 104-109.
    104. Shen, J. R, Crystallography: Resolution beyond the diffraction limit. Nature, 2016, 530, 168-169.
    105. Fitouri, H., Habchi, M. M., Rebey, A., High-resolution X-ray diffraction of II-V semiconductor thin films. In X-ray scattering, InTech: 2017, ISBN 978-953-51-288-5.
    106. Reed, J.S., Introduction to the Principles of Ceramic Processing. EBS, New York, 1988, 265-274
    107. Onoue, K., Iwamoto, T., Sagawa, Y., Optimization of the desigh parameters of fly ash-based geopolymer using the dynamic approach of the Taguchi method, Constr. Build. Mater. 2019, 219, 1-10.
    108. Qadir. M., Li, Y., Biesiekierski, A., Wen, C., Optimized fabrication and characterization of TiO2-Nb2O5-ZrO2 nanotube onβ-phase TiZr35Nb28 alloy for biomedical application via the Taguchi method. ACS Biomater. Sci. Eng. 2019, 5, 2750-2761.
    109. Shafiee, S., Ahangar, H. A., Saffar, A., Taguchi method optimization for synthesis of Fe3O4 @ chitosan/tragacanth gum nanocomposite as a drug delivery system. Carbohydrate Polymers, 2019, 222, 114982.
    110. Ebrahimi, M., Mobasherpour, I., Bafrooei, H. B., Bidabadi, F. S., Mansoorianfar, M., Orooji, Y., Khataee, A., Mei, C., Salahi, E., Ebadzadeh, T., Taguchi design for optimization of structure and mechanical properties of hydroxyapatite-alumina-titanium nanocomposite, Ceram. Int. 2019, 45, 10097-10105.
    111. Wang, T. Y., Huang, C. Y., Improving forecasting performance by employing the Taguchi method, Eur. J. Oper. Res. 2007,176, 1052–1065.
    112. Hesaraki, S., Ebadzadeh, T., Ahmadzadeh-Asl, S., Nanosilicon carbide/hydroxyapatite nanocomposites: structural, mechanical and in vitro cellular properties, J. Mater. Sci. Mater. Med. 2010, 21, 2141–2149.
    113. Ranjit, K., A Primer on the Taguchi Method, first ed., Society of Manufacturing Engineers, Roy, 1990.
    114. Phadke, S. M. Quality Engineering Using Robust Design; Prentice Hall: Englewood Cliffs, N.J., 1989.
    115. Priambodo, R.; Shih, Y. J.; Huang, Y. H. Phosphorus Recovery as Ferrous Phosphate (Vivianite) From Wastewater Produced in Manufacture of Thin Film Transistor-Liquid Crystal Displays (TFT-LCD) by a fluidized bed crystallizer (FBC). RSC Adv. 2017, 7, 40819–40828.
    116. Villa-Gomez, D.; Ababneh, H.; Papirio, S.; Rousseau, D. P. L.; Lens, P. N. L. Effect of Sulfide Concentration on the Location of the Metal Precipitates in Inversed Fluidized Bed Reactors. J. Hazard. Mater. 2011, 192(1), 200–207.
    117. Haas, S., Boschi, V., Grannas, A., Metal sorption studies biased by filtration of insoluble metal oxides and hydroxides. Sci. Total Environ. 2019, 646, 1433-1439.
    118. Cheng, W., Guo, X., Zhang, S., Jin Z., TEM study on the formation mechanism of sodium titante naotubes, J. Nanoparticle Res. 2007, 9, 1173-180.
    119. Javadian, H.; Vahedian, P.; Toosi, M. Adsorption Characteristics of Ni (II) from Aqueous Solution and Industrial Wastewater onto Polyaniline/HMS Nanocomposite Powder. Appl. Surface Sci. 2013, 284, 13– 22.
    120. Cashin, V. B., Eldridge, D. S., Kingshott, P., Yu, A., Distinguishing surface sites involved in the adsorption of lead onto sinapin aldehyde-functionalized mesocellular foam mesoporous silica. Colloid Surf. A. 2018, 552,153–160.
    121. Mousavi, S. J., Parvini, M., Ghorbani, M., Experimental design data for the zinc ions adsorption based on mesoporous modified chitosan using central composite design method, Carbohyd. Polym. 2018, 188, 197–212.
    122. Jang, H., Jeon, S., So, H., So, S., Properties of different particle size of recycled TFT-LCD waste glass powder as a cement concrete binder. International J. Precis. Eng. Manuf. 2015, 16, 2591-2597.
    123. Gharbi, A., Feki, H.E., Oudadesse, H., Novel alkali borosilicate glasses: Preparation, structural investigation and thermal study. Korean J. Chem. Eng., 2016, 33, 1456-1461.
    124. Agliullin, M.R., Danilova, I.G., Faizullin, A.V., Amarantov, S.V., Bubennov, S.V., Prosochkina, T.R., Grigor’eva, N.G., Paukshtis, E.A., Kutepov, B.I., Sol-gel synthesis of mesoporous aluminosilicates with a narrow pore size distribution and catalytic activity thereof in the oligomerization of dec-1-ene. Micropor. Mesopor. Mater. 2016, 230, 118-127.
    125. Dutta Chowdhury, A.; Doong, R. A., Highly selective nanomolar detection of Fe3+ using dopamine functionalized graphene quantum dots. ACS Appl. Mater. Interfaces, 2016, 8, 21002-21010.
    126. Lee, W.K.W., Van Deventer, J.S.J., Use of infrared spectroscopy to study geopolymerization of heterogeneous amorphous aluminosilicates. Langmuir. 2003, 19, 8726-8734.
    127. Chao, N., Pejman, H., Meng, X., Lin, C.S., McKay, K.G., Valorization of an electronic waste-derived aluminosilicate: surface functionalization and porous structure tuning. ACS Sustain. Chem. Eng. 2016, 4, 2980-2989.
    128. McGrail, B.P., Icenhower, J.P., Shuh, D.K., Liu, P., Darab, J.G., Baer, D.R., Thevuthasen, S., Shutthanandan, V., Engelhard, M.H., Booth, C.H., Nachimuthu, P., The structure of Na2O-Al2O3-SiO2 glass: impact on sodium ion exchange in H2O and D2O. J. Non-Crystalline Solids, 2001, 296, 10-26.
    129. Kukizaki, M., Nakashima, T., Acid leaching process in the preparation of porous glass membranes from phase-separated glass in the Na2O-CaO-MgO-Al2O3-B2O3-SiO2 system. Membrane. 2004, 29, 301-308.
    130. Elbana T. A., Selima, H.M., Akramia, N., Newmana, A., Shaheenb, S.M., Rinklebe, J., Freundlich sorption parameters for cadmium, copper, nickel, lead, and zinc for different soils: Influence of kinetics, Gerderma. 2018, 324, 80-88.
    131. Bhadoria, R., Singh, B.K., Tomar, R., Sorption of toxic metals on sodium aluminosilicate, Desalination, 2010, 254, 192-200.
    132. Hui, K.S., Chao, C.Y., Kot, S.C., Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash. J. Hazard. Mater. 2005,127, 89–101.
    133. Dean J.A., Lange’s handbook of chemistry. New York: McGraw-Hill. 1985.
    134. Smith, R.M., Martell, A.E., NIST critically selected stability constants of metal complexes database, version 5.0. Gaithersburg, MD, National Institute of Standards and Technology. 1998.
    135. Abdolali, A., Ngo, H.H., Guo, W., Lu, S., Chen, S.S., Nguyen, N.C., Zhang, X., Wang, J., Wu, Y., A breakthrough biosorbent in removing heavy metals: Equilibrium, kinetic, thermodynamic and mechanism analyses in a lab-scale study. Sci. Total Environ. 2016, 524, 603-611.
    136. Elwakeel, K.Z., El-Bindary, A.A., Kouta, E. Y., Guibal, E., Functionalization of polyacrylonitrile/Na-Y-zeolite composite with amidoxime groups for the sorption of Cu(II), Cd(II) and Pb(II) metal ions. Chem. Eng. J. 2018, 332, 727-736.
    137. Lu, Y., He, D., Lei, H., Hu, J., Huang, H., Ren, H., Adsorption of Cu (II) and Ni (II) from aqueous solutions by taro stalks chemically modified with diethylenetriamine. Environ. Sci. Pollut. Res., 2018,18, 17425-17433.
    138. Melo, D.Q., Neto, V.O., Oliverira, J.T., Barros, A. L., Gomes E.C., Raulino, G.S., Longguinotti, E. R., Nascimento, F., Adsorption equilibria of Cu2+, Zn2+ and Cd2+ on EDTA-functionalized silica spheres, J. Chem. Eng. Data. 2013, 58, 798-806.
    139. Doong, R.A., Liao. C.Y., Enhanced visible-light-responsive photodegradation of bisphenol A by Cu, N-codoped titanate nanotubes prepared by microwave-assisted hydrothermal method, J. Hazard. Mater. 2017, 322, 254-262
    140. Wang, Y., Xu, Z., Song, X., Yang, B., Zhang, D., The preparation of low cost adsorbent for heavy metal based on furfural residue. Mater. Manuf. Proc., 2017, 32, 87-92.
    141. Zhang, Y., Dong, J., Guo, F., Shao, Z., Wu, J., Zeolite synthesized from coal fly ash produced by a gasification process for Ni2+ removal from water. Mineral. 2018, 8, 116-130.
    142. Wang, C., Wang, H., Carboxyl functionalized Cinnamomum camphora for removal of heavy metals from synthetic wastewater-contribution to sustainability in agroforestry. J. Clean. Prod. 2018, 184, 921–928.
    143. Zhou, Q., Liao, B., Lin, L., Qiu, W., Song, E., Adsorption of Cu(II) and Cd(II) from aqueous solutions by ferromanganese binary oxide–biochar composites. Sci. Total Environ. 2018, 615, 115-122.
    144. He, R., Wang, Z., Tan, L., Zhong, Y., Li, W., Xing, D., Wei, C., Tang, Y., Design and fabrication of highly ordered ion imprinted SBA-15 and MCM-41 mesoporous organosilicas for efficient removal of Ni2+ from different properties of wastewaters. Micropor. Mesopor. Mater. 2018, 257, 212-221.
    145. Mohammed, A. A., Samaka, I. S., Bentonite coated with magnetite Fe3O4 nanoparticles as a novel adsorbent for copper (II) ions removal from water/wastewater. Environ. Technol. Innov., 2018, 10, 162-174.
    146. Son, E.B., Poo, K.M., Chang, J. S., Chae, K. J., Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass. Sci. Total Environ. 2018, 615, 161-168.
    147. Qiu, Q., Jiang, X., Lv, G., Chen, Z., Lu, S., Ni, M., Yan, J., Deng, X., Adsorption of heavy metal ions using zeolite materials of municipal solid waste incineration fly ash modified by microwave-assisted hydrothermal treatment. Powder Technol. 2018, 325, 156-163.
    148. Ma, J., Qin, G., Zhang, Y., Sun, J., Wang, S., Jiang, L., Heavy metal removal from aqueous solutions by calcium silicate powder from waste coal fly-ash. J. Clean. Prod., 2018, 182, 776-782.
    149. Mohammed, A. A., Samaka, I. S., , Bentonite coated with magnetite Fe3O4 nanoparticles as a novel adsorbent for copper (II) ions removal from water/wastewater. Environ. Technol. Innov., 2018, 10, 162-174.
    150. Alqadami, A. A., Khan, M. A., Otero, M., Siddiqui, M. R., Jeon, B. H., Batoo, K. M., A magnetic nanocomposite produced from camel bones for an efficient adsorption of toxic metals from water. J. Clean. Prod. 2018, 178, 294-304.
    151. Zhang, M., Song, L., Jiang, H., Li, S., Shao, Y., Yang, J., Li, J., Biomass based hydrogel as an adsorbent for the removal of heavy metal ions from aqueous solution, J. Mater. Chem. A., 2016, 00, 1-13.
    152. Sheng, P. X., Ting, Y. P., Cheng, J. P., Hong, L., Sorption of lead, copper, cadmium, Zinc and nickel by marine algal biomass: Characterization of biosorption capacity and investigation of mechanisms. J. Colloid Inter. Sci., 2004, 275, 131-141.
    153. Hadi, P., Ning, C., Kubicki, J. P., Mueller, K., Fagan, J. W., Luo, Z., Weng, L., Mckay, G., Sustainable developments of a surface functionized mesoporous aluminosilicate with ultra-high ion exchange efficiency. Inorg. Chem. Front. 2016, 23, 502-513.
    154. McCafferty, E. and Wightman, J. P., Determination of the concentration of surface hydroxyl groups on metal oxide films by a quantitative XPS method. Surf. Interface Anal., 1998, 26, 549-564.
    155. Zhang, S., Yang, H., Huang, H., Gao, H., Wang, X., Cao, R., Li, J., Xu, X., Wang, X., Unexpectedultrafast and high adsorption capacity of oxygen vacancy-richWOx/C nanowire networks for aqueous Pb2+ and methylene blue removal. J. Mater. Chem. A 2017, 5,15913–15922.
    156. Mutiara, A. S.; Shankararaman, C. Mechanism of Boron Removal from Hydraulic Fracturing Wastewater by Aluminum Electrocoagulation. J. Colloid Interface Sci. 2015, 458, 103-111.
    157. Irawan, C.; Kuo, Y. L.; Liu, J. C. Treatment of Boron-Containing Optoelectronic Wastewater by Precipitation Process. Desalination 2011, 280(1-3), 146-151.
    158. Danis, K.; Huang, Y. H.; Shih, Y. J. Electro-Oxidation and Characterization of Nickel Foam Electrode for Removing Boron. Chemosphere 2017, 166, 184-191.
    159. Dolati, M.; Aghapour, A. A.; Khorsandi, H.; Karimzade, S. Boron Removal from Aqueous Solutions by Electrocoagulation at Low Concentrations. J. Environ. Chem. Eng. 2017, 5(5), 5150–5156.
    160. Arias, M. F. C.; Bru, L. Vi.; Rico, D. P.; Galvan, P. V. Comparison of Ion Exchange Resin Used in Reduction of Boron in Desalinated Water for Human Consumption. Desalination 2011, 278 (1-31), 244-253.
    161. Bilgin Simsek, E.; Beker, U.; Senkal, B. F. Predicting the Dynamics and Performance of Selective Polymeric Resins in A Fixed Bed System for Boron Removal. Desalination 2014, 349, 39-50.
    162. Kang, J.; Tang, Y.; Gao, S.; Liu, L. One-Dimensional Controllable Cross-linked Polymers Grafted with N-Methyl-D-Glucamine for Effective Boron Adsorption. New J. Chem. 2018, 42(14), 11334-11340.
    163. Lin, J. Y.; Shin, Y. J.; Hsieh, T. Y.; Huang, Y. H. Role of Phase Transformation of Barium Perborates in the Effective Removal of Boron from Aqueous Solution via Chemical Oxo-Precipitation. RSC Adv., 2016, 6, 63206-63213.
    164. Lin, J. Y.; Song, Y. J.; Shin, Y. J.; Huang, Y. H. Solubility Products of Sparingly Soluble Barium Perborates in Aqueous Solution that Contains B(OH)3 and H2O2 at 25 °C. J. Colloid Interface Sci. 2017, 505(1), 703-710.
    165. Shih, Y. J.; Liu, C. H.; Lan, W. C.; Huang, Y. H. A Novel Chemical Oxo-Precipitation (COP) Process for Efficient Remediation of Boron Wastewater at Room Temperature. Chemosphere 2014, 111, 232–237.
    166. Shih, Y. J.; Abarca ,R. R. M.; Luna, M. D. G.; Huang, Y. H.; Lu, M. C. Recovery of Phosphorus from Synthetic Wastewaters by Struvite Crystallization in a Fluidized-Bed Reactor: Effects of pH, Phosphate Concentration and Coexisting Ions. Chemosphere 2017, 173, 466-473.
    167. Jiang, K.; Zhou, K. G. Recovery and Removal of Fluoride from Fluorine Industrial Wastewater by Crystallization Process: A Pilot Study. Clean Technol. Environ. Policy. 2017, 19(9), 2335–2340.
    168. Zhang, Z., Liu, H., Wu, L., Lan, H., Qu, J., Preparation of amino-Fe(III) functionalized mesoporous silica for synergistic adsorption of tetracycline and copper. Chemosphere, 2015, 138, 625-632.
    169. Zhang, B., Wu, Tao, Sun, D., Chen, W., Li, G., Li, Y., NH2-MCM-41 supported on nitrogen-doped graphene as bifunctional composites for removing phenol compounds:Synergistic effect between catalytic degradation and adsorption. Carbon, 2019, 147, 312-322.
    170. Nguyen, C. H., Juang, R. S., Efficient removal of methylene blue dye by a hybrid adsorption-photocatalysis process using reduced graphene oxide/titanate nanotube composites for water reuse. J. Ind. Eng. Chem. 2019, 76, 296-309
    171. Kim, K.; Kim, K.; Hwang, J. Thin Film Transistor-Liquid Crystal Display Cullet: A Raw Material for Production of Commercial Soda Lime Silicate Glasses. J. Clean. Prod. 2014, 79, 276-282.
    172. Li, X.; Gao, S.; Xing, P.; Dong, K.; Gao, B.; Feng, Z. Recovery and reutilization of high-quality boron carbide from sapphire wafer grinding-waste. J. Environ. Manag. 2018, 224, 106–112.
    173. Tsai, C. K.; Doong, R. A.; Hung, H. Y. Sustainable Valorization of Mesoporous Aluminosilicate Composite from Display Panel Glass Waste for Adsorption of Heavy Metal Ions. Sci. Total Environ. 2019, 673, 337-346.
    174. Jung, K. W.; Lee, S. Y.; Choi, J. W.; Lee, Y. J. A facile one-pot hydrothermal synthesis of hydroxyapatite/biochar nanocomposites: Adsorption behavior and mechanisms for the removal of copper (II) from aqueous media. Chem. Eng. J. 2019, 369, 529-541.
    175. Mu, W.; Du, S.; Yu, Q.; Li, X.; Wei, H.; Yang, Y. Improving Barium Ion Adsorption on Two Dimensional Titanium Carbide by Surface Modification. Dalton Trans. 2018, 47(25), 8375-8381.
    176. Walrafen, G. E.; Krishnan, P. N.; Hokmabadi, M. D.; Griscom, C.; Munro, R. G. Surface Raman Scattering from Effervescent Magnetic Peroxyborates. J Chem Phys. 1982, 77(8), 3840-3846.
    177. Lin, J. Y.; Shih, Y. J.; Chen, P. Y.; Huang, Y. H. Potential Oxo-Precipitation (COP) for Remediating Wastewater with a High Boron Concentration Using H2O2/Ba(OH)2 at Room Temperature. Energy Procedia. 2014, 61, 349-352.
    178. Chen, C. S.; Shih, Y. J.; Huang, Y. H. Remediation of Lead(Pb(II)) Wastewater Through Recovery of Lead Carbonate in as Fluidized-Bed Homogeneous Crystallization (FBHC) System. Chem. Eng. J. 2015, 279, 120-128.

    QR CODE