研究生: |
林育楷 Lin, Yu-Kai. |
---|---|
論文名稱: |
使用熱重分析法研究氬氣環境下Ti1-xZrxN被覆D2鋼的氧化行為 Study of Oxidation Behavior of Ti1-xZrxN Coated D2 Steel in Ar Atmosphere using Thermal Gravimetric Analysis |
指導教授: |
喻冀平
Yu, Ge-Ping 黃嘉宏 Huang, Jia-Hong |
口試委員: |
呂福興
Lu, Fu-Hsing 董曉明 Tung, Hsiao-Ming |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 90 |
中文關鍵詞: | 熱重分析 、氮化鈦鋯薄膜 、氧化行為 、氬氣氣氛 、斯里蘭卡礦 |
外文關鍵詞: | TGA, TiZrN thin film, oxidation, Ar atmosphere, srilankite |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的採用非平衡磁控濺鍍法鍍製披覆在D2鋼上三種鋯/鈦+鋯比0.33,0.5,0.67的氮化鈦鋯薄膜,並且使用熱重分析儀來研究其在氬氣保護性氣氛下的高溫氧化行為。本實驗控制的參數為熱處理的溫度,分別選用攝氏600、700、800和900度,其熱處理時間全部固定持溫一個小時。其氧化層是用正角X光繞射圖譜搭配粉末衍射標準聯合委員會的繞射圖譜來判定。氮化鈦鋯三種鋯/鈦+鋯比系列的氧化物結構分別是Ti2ZrO6、 TiZrO4和TiZrO4,。Ti2ZrO6、 TiZrO4分類在(Ti,Zr)O2系統中,(Ti,Zr)O2系統都是srilankite結構。從表面形貌的結果來看,薄膜的含鋯量越高會有越大的體積膨脹,造成在熱處理後的表面形貌有著氣泡以及裂縫,不利於薄膜抗氧化。從X光繞射圖譜可以知道,Ti0.67Zr0.33N薄膜的熱穩定性最差,而Ti0.33Zr0.67N和Ti0.50Zr0.50N薄膜在攝氏600度氬氣環境下,還有一定的抵抗能力。不同的熱處理溫度會影響到薄膜內的結晶相比例,分析結果顯示攝氏700~800度有利於氮化鈦鋯薄膜生成具有保護性的氧化層,但到攝氏900度就會引起氧化層破裂。由增重所計算的n值顯示,當氧化層中具有TiO2相,有利於抗氧化能力的提升。攝氏700度熱處理Ti0.67Zr0.33N薄膜是全部試片中有著最好的抗氧化能力,試片表面平滑沒有氣泡與裂縫存在,且有TiO2相存在在氧化層中。從薄膜成分的縱深分析結果來看,氮化鈦鋯氧化層的成長與其薄膜含鋯量有著密切的關聯,Ti0.33Zr0.67N系列薄膜氧化層成長屬於介面控制, Ti0.50Zr0.50N系列薄膜氧化層成長則可能是屬於多重控制。
This study aimed to deposit Ti1-xZrxN coating with Zr/Ti+Zr ratio of 0.33, 0.50, and 0.67 on D2 steel by dc UBMS and investigate their oxidation behavior in the argon atmosphere using thermal Gravimetric analysis at different heat treatment temperature of 600, 700, 800, and 900oC. The heat treatment durations were all fixed in an hour. The oxidized layers were identified by XRD and XPS. The oxidized layers are Ti2ZrO6, TiZrO4, and TiZrO4 for Ti0.67Zr0.33N, Ti0.50Zr0.50N, and Ti0.33Zr0.67N thin film, respectively. The Ti2ZrO6, and TiZrO4 belongs to the (Ti, Zr) O2 system which is a srilankite structure. Ti0.67Zr0.33N thin films showed the worst thermal stability, and the Ti0.50Zr0.50N and Ti0.33Zr0.67N thin films showed a certain thermal stability at 600oC in argon atmosphere as showed in XRD patterns. The SEM images indicated intense volume expansion with increasing Zr/(Ti+Zr) ratio which caused worse morphology .The bubbles and macro cracks on the surface were detrimental for oxidation resistance. The heating temperature influenced the phase ratio of oxidized layers. The heating temperature range at 700 to 800oC was the best condition to form protective oxidized layer. The specimen Ti0.67Zr0.33N with TiO2 phase existed in the oxidized layer showed a minimal n value which implied TiO2 existed in oxidized layer was beneficial. The 700oC heat treated Ti0.67Zr0.33N thin films showed the best capability of oxidation resistance, since the smooth surface and TiO2 phase existed in oxidized layer were both beneficial to oxidation resistance. Results of the depth profile of oxidized layer revealed that the oxidation behaviors of TiZrN thin films were significantly influenced by their compositions. The growth of oxidized layer of Ti0.33Zr0.67N thin film was interface controlled .The growth of oxidized layer of Ti0.5Zr0.5N thin film could be attributed to mixed controls.
[1] C. Mitterer, F. Holler, F. Ustel, D. Heim, Application of hard coatings in aluminium die casting — soldering, erosion and thermal fatigue behavior, Surf. Coat. Technol., 125 (2000), 233-239.
[2] J. Lin, B. Misha, J.J. Moore, W.D. Sproul, A study of the oxidation behavior of CrN and CrAlN thin films in air using DSC and TGA analyses, Surf. Coat. Technol., 202 (2008), 3272-3283.
[3] Hsiao-Ming Tung, Po-Hsien Wu, Ge-Ping Yu, Jia-Hong Huang, Microstructures, Mechanical properties and oxidation behavior of vacuum annealed TiZrN thin films, J. Vac. Sci. Technol., A., 115 (2015), 12-18 .
[4]H.A. Wrledt, J.L. Murray, The N-Ti (Nitrogen-Titanium) System, J. Phase Equilib., 17 (1996), 248-252.
[5] H.Okamoto, N-Zr (Nitrogen-Zirconium), J. Phase Equilib., 27 (2006), .551-551.
[6] JCPDS PDF#870633.
[7] JCPDS PDF#893839.
[8] Jia-Hong Huang, Kiang-Wee Lau, Ge-Ping Yu, Effect of nitrogen flow rate on structure and properties of nanocrystalline TiN thin films produced by unbalanced magnetron sputtering, Surf. Coat. Technol., 191 (2005), 17-24.
[9] Z.B. Qi, P. Sun, F.P. Zhu, Z.C. Wang, D.L. Peng, C.H. Wu, The inverse Hall–Petch effect in nanocrystalline ZrN coatings, Surf. Coat. Technol., 205 (2011), 3692-3697.
[10] S. Heinrich, S. Schirmer, D. Hirsch, J.W. Gerlach, D. Manova, W. Assmann, S. Mändl, Comparison of ZrN and TiN formed by plasma based ion implantation & deposition, Surf. Coat. Technol., 202 (2008), 2310-2313.
[11] Deng Jianxin, Liu Jianhua, Zhao Jinlong, Song Wenlong, Niu Ming, Friction and wear behaviors of the PVD ZrN coated carbide in sliding wear tests and in machining processes, N. Ming, Wear., 264 (2008), 298-307.
[12] William D. Sproul, Very high rate reactive sputtering of TiN, ZrN and HfN, Thin Solid Films., 107 (1983), 141-147.
[13] Marc Wittmer, High‐temperature contact structures for silicon semiconductor devices, Applied Physics Letters., 37 (1980), 540-542.
[14] C. Y. Ting, TiN formed by evaporation as a diffusion barrier between Al and Si, J. Vac. Sci. Technol, A., 21 (1982), 14-18.
[15] G.R. Uwe Beck, Ingrid Urban, Hermann A. Jehn, Uwe Kopacz, Hartmuth Schack, Surf. Coat. Technol, 61 (1993), 8.
[16] T.C.K. V.A. Mernagh, M. Ahern, A.D. Kennedy, Surf. Coat. Technol, 49 (1991), 6.
[17] Yu-Wei, Jia-Hong Huang, Ge-Ping Yu, Microstructure and corrosion resistance of nanocrystalline TiZrN films on AISI 304 stainless steel substrate, J. Vac. Sci. Technol., A, 28 (2010), 774.
[18] V.V. Uglov, V.M. Anishchik, S.V. Zlotski, G. Abadias, The phase composition and stress development in ternary Ti–Zr–N coatings grown by vacuum arc with combining of plasma flows, Surf. Coat. Technol., 200 (2006), 22-23.
[19] G. Abadias, V.I. Ivashchenko, L.Belliard, Ph. Djemia, Structure, phase stability and elastic properties in the Ti1–xZrxN thin-film system: Experimental and computational studies, Acta Mater., 60 (2012), 5601-5614.
[20] Mayumi B. Takeyama, Takaomi Itoi, Eiji Aoyagi, Atsushi Noya, Diffusion barrier properties of nano-crystalline TiZrN films in Cu/Si contact systems, Appl. Surf. Sci., 216 (2003), 181-186.
[21] G. Abadias, L. E. Koutsokeras, S. N. Dub, G. N. Tolmachova, A. Debelle, T. Sauvage, P. Villechaise, Reactive magnetron cosputtering of hard and conductive ternary nitride thin films: Ti–Zr–N and Ti–Ta–N, J. Vac. Sci. Technol, A., 28 (2010), 541-551.
[22] Yu-Wei Lin, Jia-Hong Huang, Ge-Ping Yu, Effect of nitrogen flow rate on properties of nanostructured TiZrN thin films produced by radio frequency magnetron sputtering, Thin Solid Films., 518 (2010), 7308-7311.
[23] E.W. Niu, L. Li, G.H. Lv, H. Chen, X.Z. Li, X.Z. Yang, S.Z. Yang,’’ Characterization of Ti–Zr–N films deposited by cathodic vacuum arc with different substrate bias‘’, Appl. Surf. Sci., 254 (2008), 3909-3914.
[24] W. Mader, H. F. Fischmeister, E. Bergmann, “Defect Structure of Ion-Plated Titanium Nitride Coating”, Thin Solid Films., 182 (1989), 141.
[25] Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Effect of heat treatment on the structure and properties of ion-plated TiN films, Surf. Coat. Technol., 168 (2003), 43.
[26] Jia-Hong Huang, Kae-Hong Yu, P. Sit, Ge-.Ping Yu, “Heat treatment of nanocrystalline TiN films deposited by unbalanced magnetron sputtering”, Surf. Coat. Technol, 200 (2006), 4291.
[27] C. Wagner, The theory of warm-up process, Phys. Chem., 21 (1933), 25.
[28] N. Birks, G. H. Meier and F. S. Pettit, Introduction to the high-temperature oxidation of metals, 2nd ed, Cambridge University Press, New York, 2006, 3.
[29] Fu-Hsing Lu, Shiaw-Pyng Feng, Hong-Ying Chen, Ji-Kwei Li, The degradation of TiN films on Cu substrates at high temperature under controlled atmosphere, Thin Solid Films., 375 (2000), 123–127.
[30] Fu-Hsing Lu, Wen-Zheng Lo, Degradation of ZrN films at high temperature under controlled atmosphere, J. Vac. Sci. Technol. A., 22 (2004), 2071–2076.
[31] Phillip G. Wahlbeck, Paul W. Gilles, Reinvestigation of the Phase Diagram for the System Titanium–Oxygen, J. Am. Ceram. Soc., 49 (1966), 180-183.
[32] Jia-Hong Huang, Yu-ying Hu, Ge-.Ping Yu, Structure evolution and mechanical properties of ZrNxOy thin film deposited on Si by magnetron sputtering, Surf. Coat. Technol., 205 (2011), 5093-5102.
[33] Jia-Hong Huang, Tzu-Chun Lin, Ge-.Ping Yu, Phase transition and mechanical properties of ZrNxOy thin films on AISI 304 stainless steel, Surf. Coat. Technol., 206 (2011), 107-116
[34] RF. Domagala, R. Ruh. , SYSTEM ZIRCONIUM--HAFNIUM—OXYGEN, Amer. Soc. Metaks, 62 (1969), 915-925.
[35] A.Hoerling, J. Sjolen, H. Willmann, T. Larsson, M. Oden, L. Hultman, Thermal stability, microstructure and mechanical properties of Ti1 − xZrxN thin films, Thin Solid Films., 516 (2008), 6421–6431.
[36] O. KNOTEK, A BARIMANI, On spinodal decomposition in magnetron-sputtered (Ti,Zr) nitride and carbide thin films, Thin Solid Films., 174 (1989), 51-56.
[37] Tstsuo Noguchi, Masao. Mizuno, Phase Changes in the ZrO2-TiO2 System, Bull. Chem. Soc. Jpn., 41 (1968), 2895-2899.
[38] Alexander. Willgallis, Hans. Hartl, (Zr0.33Ti0.67)O2 - ein natürliches Zirkonium-Titanoxid mit a-PbO2-struktur, Zeitschrift für Kristallographie., 164 (1983), 59-66.
[39] Ulrike Troitzsch, David J. Ellis, High-PT study of solid solutions in the system ZrO2-TiO2:The stability of srilankite, Eur. J. Mineral., 16 (2004), 577-584.
[40] U. Troitzsch, A.G. Christy, D.J. Ellis, The crystal structure of disordered (Zr,Ti)O2 solid solution including srilankite: Evolution towards tetragonal ZrO2, Phys. Chem. Miner., 32 (2005), 504-514.
[41] Ulrike Troitzsch, TiO2-Doped Zirconia: Crystal Structure, Monoclinic-Tetragonal Phase Transition, and the New Tetragonal Compound Zr3TiO8, J. Am. Ceram. Soc., 89 (2006), 3201-3210 .
[42] D. Briggs, M.P. Seah, ‘’Practical surface analysis by AES and XPS’’, Wiley, New York, 1983.
[43] H.-H.S. I. Milosev, M. Gaberscek, B. Navinsek, Electrochemical Oxidation of ZrN Hard (PVD) Coatings Studied by XPS, Surf. Interface anal., 24 (1996), 449.
[44]B.K. L. Wicikowski, L. Murawski, KSzaniawska, B. Susla, AFM and XPS study of nitride TiO2 and SiO2-TiO2 sol-gel derived films, Vacuum., 54 (1999), 221.
[45]R.G. M. Del Re, J.-P. Dauchot, P.Leclere, G. Terwagne, M. Hecq, Study of ZrN layers deposited by reactive magnetron sputtering, Surf. Coat. Technol., 240 (2003), 174-175.
[46] P. Scherrer, Bestimmung der Gösse und der inner Struktur von Kolloidteilchen mittels Röntgenstrahlen, Gött. Nachr., 2 (1918) 98-100.
[47] L.V. Azoroff, M.J. Buerger, The powder method in X-ray crystallography, McGrawHill New York, 1958.
[48] W.C. Oliver, G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7 (1992), 1564-1583.
[49] JCPDS-46-1265.
[50] JCPDS-74-1504.
[51]Wei-Jen. Cheng, Master Thesis, Department of Engineering System and Science, National Tsing Hua University, Taiwan, (R.O.C.), 2016.
[52] Chia-Wei Lu, Master Thesis, Department of Engineering System and Science, National Tsing Hua University, Taiwan, (R.O.C.), 2012.
[53] Chiapyng lee, Yu-Lin Kuo, The Evolution of Diffusion Barriers in Copper Metallization, JOM., 59 (2007), 44-49.
[54] Y.-L Kuo, F.-C Kung, T.-L. Su, superior stability of ultrathin and nanocrystalline TiZrN ffilms as diffusion barriers for Cu merallization, Nanoscience and Nanotechnology Letters., 1 (2009), 37-41
[55]Gaskell, Introduction to the thermodynamics of materials, 5th ed, Taylor & Francis, New York, 2008, 318
[56] David R. Lide, CRC Handbook of Chemistry and Physics, 90th ed, Fiona Macdonald, Florida, 2009, 5-17
[57] Milosev, H.-H. Strehblow, B.Bavinsek, Oxidation of ternary TiZrN hard coatings studied by XPS, Surf. Interface Anal., 26 (1998), 242-248