研究生: |
黃博揚 Huang, Po-Yang |
---|---|
論文名稱: |
高頻電燒刀電源系統研製 Design and Implementation of Electrosurgical Generators |
指導教授: |
吳財福
Wu, Tsai-Fu |
口試委員: |
陳科宏
Chen, Ko-Hung 羅有綱 Lo, Yu-Kang 謝耀慶 Hsieh, Yao-Ching |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 95 |
中文關鍵詞: | 高頻電燒刀 、定功率輸出 、諧振換流器 、零電壓切換 |
外文關鍵詞: | Electrosurgical generator, Resonant inverter, Zero voltage switching (ZVS), Constant power regulation |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究研製一部高頻電燒刀電源系統,具備五種模式,分別為單極切割、單極凝結、雙極切割、雙極凝結及結紮模式。不同模式可產生出不同的電壓、功率及波形,以使用在不同的開刀位置與組織。
本研究著重於實現五種不同模式之電源設計,所使用的電路架構為全橋諧振換流器,其操做頻率為400 kHz,藉由諧振特性使開關達到軟切換,降低切換損失。另外,在全橋諧振電路的前級製作一個降壓型的直流/直流轉換器,來調整直流電壓,達到可以調整輸出功率的大小。為了減少功率開關的數量,在架構上利用繼電器將全橋功率開關與不同模式的電路隔開,以達到分時共用的效果。本研究採用數位控制,可提升系統自由度與可靠度,並利用類比/數位轉換的機制,回授功率級的電壓與電流,再以相位偏移來達到定功率輸出的控制。此外,藉由微控制器做軟體保護或利用電路達到硬體保護,當系統於運作中發生異常時,可即時保護系統,使電路系統免於毀損。
本論文之主要貢獻為: 實作一輸入110 V/60 Hz,透過外部開關的切換,可切換5種模式,最高達300 W之電燒刀電源系統。將此電路實際操作在雞肉與豬肉的組織上,切換各種模式,可達到預想之切割與凝結效果,間接地說明了本研究的可行性與價值。
This research is to design and implement Electrosurgical Generators (ESG) which can be divided into five modes: mono-polar cut, mono-polar coagulation, bi-polar cut, bi-polar coagulation and ligation. Different modes use different voltages, power ratings and waveforms to deal with multiple kinds of surgical operating targets and tissues.
Using a full-bridge resonant inverter functions as the proposed system power stage, of which the operating frequency is 400 kHz and it is operated above resonance to achieve soft switching, reducing switching losses. Moreover, in front of the full bridge switches and resonant tank, a buck converter is designed to adjust output power levels. To reduce the number of full-bridge switches, relays are used to separate the full-bridge switches from mode to mode, achieving full-bridge switch sharing. This study uses direct digital control to improve system flexibility and reliability. It feeds back voltage and current signals to achieve constant output power regulation with a phase-shift control. For safety consideration, a microcontroller is programmed to achieve software protection, and circuits are used for hardware protection. When something goes wrong during operation, the protecting functions can respond immediately to avoid any damage to the system.
The main contribution of this research is in implementing an ESU with 110 V/60 Hz input voltage, maximum 300 W output power, and 5 operation modes. Furthermore, we test the system on chicken and pork as equivalent loads to the experiment under different operation modes, which indirectly proves the feasibility of the designed system.
1. D. A. Friedrichs, R. W. Erickson and J. Gilbert, “A New Dual Current-Mode Controller Improves Power Regulation in Electrosurgical Generators,” IEEE Transactions on Biomedical Circuits and Systems, vol. 6, no. 1, pp. 39-44, Feb. 2012.
2. S. Jensen, D. Maksimovic, D. Friedrichs, and J. Gilbert, “Fast tracking electrosurgical generator using GaN switches,” IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, 2015, pp. 1404-1408.
3. S. Jensen and D. Maksimovic, “Fast Tracking Electrosurgical Generator Using Two-Rail Multiphase Buck Converter With GaN Switches,” IEEE Transactions on Power Electronics, vol. 32, no. 1, pp. 634-641, Jan. 2017.
4. O. H. Wangensteen and S. D. Wangensteen, “The rise of surgery: from empiric craft to scientific discipline”, (8):17,1978.
5. R. M. Goldwyn, “Bovie: The man and the machine”, Annals of Plastic Surgery, vol. 2, pp. 135-153, 1979.
6. A. d'Arsonva1, “Action physiologique des courants alternatifs”, C. R. Seances Soc. Biol., vol. 43, pp. 283-286, 1891.
7. J. R. Lacourse, W. T. Miller, M. Vogt, and S. M. Selikowitz, “Effect of High-Frequency Current on Nerve and Muscle Tissue,” IEEE Transactions on Biomedical Engineering, vol. BME-32, no. 1, pp. 82-86, Jan. 1985.
8. “Principles of Electrosurgery.” Internet: http://www.asit.org/assets/documents/Prinicpals_in_electrosurgery.pdf, 2008 [July 2019].
9. N. N. Massarweh, N. Cosgriff and D. P. Slakey, “Electrosurgery: History, Principles, and Current and Future Uses,” Journal of the American College of Surgeons, vol. 202, pp. 520-530, Mar. 2006.
10. J. F. Rey, U. Beilenhoff, C. S. Neumann, and J. M. Dumonceau, “European Society of Gastrointestinal Endoscopy (ESGE) guideline: the use of electrosurgical units,” Gastrointest Endoscopy, vol. 42, pp. 764-771, 2010.
11. L. E. Curtiss, “High frequency currents in endoscopy: A review of principles and precautions,” Gastrointest Endoscopy, vol. 20, no. 1, pp. 9-12, Aug. 1973.
12. S. K. Sinha and A. Dhua, “Energy Sources in Neonatal Surgery: Principles and Practice”, Journal of neonatal surgery, April 2014, 3(2): 17.
13. B. Chen and Y. Lai, “Switching Control Technique of Phase-Shift-Controlled Full-Bridge Converter to Improve Efficiency Under Light-Load and Standby Conditions Without Additional Auxiliary Components,” IEEE Transactions on Power Electronics, vol. 25, no. 4, pp. 1001-1012, April 2010.
14. P-Duke Power, TAD-30 Series Datasheet, 2018.
15. P-Duke Power, PDL03 Series Datasheet, 2016.
16. IXYS Integrated Circuits, LOC110 Datasheet, 2016.
17. Allegro, ACS712 Datasheet, 2006.
18. Infineon, 1EDI60N12AF Datasheet, 2015.
19. Renesas, RX62T Group Datasheet, Rev. 1.10, Apr. 2011.
20. Cree, C3M0065100K Datasheet, 2016.
21. Infineon, IPW60R031CFD7 Datasheet, 2018.
22. 林柏言,電感之種類與其特性分析,立錡科技,2017。
23. Ferroxcube, ETD49 Datasheet, 2004.
24. BAISHENG MEDICAL CO.,LTD, OBS 100C(Ⅱ), Datasheet