簡易檢索 / 詳目顯示

研究生: 曹瑋玲
論文名稱: 可分解性聚酯嵌段共聚物之合成與自組裝行為之研究
Synthesis and Self-assembly of Degradable Polyester-containing Block Copolymers
指導教授: 何榮銘
Ho,
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 115
中文關鍵詞: 掌性嵌段共聚物螺旋體超結構旋性控制擴散
外文關鍵詞: chiral diblock copolymer, helical superstructure, handedness control, diffusivity
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The chiral effect on the self-assembly of block copolymers has been demonstrated for a block copolymer system containing chiral entities (i.e. a chiral block copolymer (BCP*)), poly(styrene)-b-poly(L-lactide) (PS-PLLA BCPs*), and it leads to the formation of new phases such as helical phase (H*). To comprehend the effect of chirality on BCP self-assembly, a series of poly(4-vinyl pyridine)-b-poly(L-lactide) (P4VP-PLLA) BCPs* were synthesized. Similar to the PS-PLLA, a helical phase can be found in the self-assembly of the P4VP-PLLA BCPs*. Also, we aim to investigate the mechanisms of chiral information transfer from molecular level to macroscopic level through self-assembly. P4VP-PDLA BCPs* were synthesized for self-assembly so as to compare the self-assembling results of P4VP-PLLA. Vibration circular dichroism (VCD) spectroscopy was used to examine the handedness of helical chain conformation. The results indicated that the P4VP-PLLA and P4VP-PDLA BCPs* possess left- and right-handed helical chain conformations, respectively. A red shift in the circular dichroism (CD) spectra of BCPs* chains in solution reflected the occurrence of aggregation so as to lead the formation of helical superstructures. It is intuitive to suggest that one-handed superstructures can be obtained from the self-assembly through chiral information transfer. Interestingly, right-handed helical superstructures were found from the self-assembly of P4VP-containing BCPs* in solution regardless of enanitomeric character. As a result, the chiral information might be missing as the BCPs* self-assemble into higher organizational levels; namely, the chiral information transfer can not be successfully achieved. To truly examine the self-assembly mechanisms and the corresponding morphological evolution, in particular, the issue with respect to handedness control, the self-assembly processes were controlled by changing the self-assembly conditions such as temperature or solvent. With the appropriate conditions for self-assembly, the formation of left-handed helical superstructures can be achieved from the self-assembly of P4VP-containing BCPs* in solution.
    For nanopatterning, a series of diblock copolymers, poly(styrene)-b- poly(3-hydroxybutyrate) (PS-PHB), with PHB hexagonal cylinder (HC) nanostructures were synthesized in this study. Well-oriented, perpendicular PHB cylinders of PS-PHB thin films were efficiently achieved by spin coating using appropriate solvents regardless of the use of substrates. After hydrolysis of PHB, well-oriented HC nanochannel arrays over large area in addition to uniform surface with controlled thickness and domain size can be obtained; providing a simple and efficient path to prepare nanopatterned templates for applications. The induced orientation of PS-PHB microdomains is strongly dependent upon the evaporation rate of solvent and its solubility between constituted blocks. Consistent with our previous studies, the primary concern of controlled morphology for nanopatterning is to develop ordered microphase-separated morphology by considering the time scale for segregation, namely segregation strength during solvent evaporation. The induced orientation is attributed to the permeation discrepancy between phase-separated microdomains. The lower Tg for PHB as compared to PLLA provides a much easier way for nanopatterning due to the alleviation of the thin-layer PLLA forming on the substrate so that it is possible to acquire the well-defined nanopatterns under ambient conditions. The perpendicular morphology is initiated from the air surface, and formed in order to create an optimized condition (i.e. the fastest path) for solvent evaporation whereas parallel morphology may impede the evaporation of solvent molecules. Following the microphase separation, the perpendicular morphology can be kinetically induced by solvent evaporation.


    Abstract…………………………………………………….…………….I Contents………………………………………………………..……….IV List of Tables………………………………………………..…………VII List of Figures………………………………………………..………VIII Chapter 1 Introduction…………………………………………………1 1.1 Self-assembly………………………………………………………...1 1.2 Self-assembly of Block Copolymers in Bulk………………………...4 1.3 Self-assembly of Block Copolymers in Solution……………….……8 1.4 Helical Architectures from Self-assembly of Chiral Block Copolymer…………………………………………………………..11 1.4.1.1 Helical Superstructures……………………………………...…13 1.4.1.2 Helical Phases……………………………………………….....15 1.5 Competition between Microphase Separation and Crystallization in Semi-crystalline Block Copolymers…………………………….….18 1.6 Chiral Information Transfer……………………………………...….26 1.7 Handedness Control of Helical Architectures………………………29 1.8 Development of Nanopatterning Technology…………………….…35 1.8.1 Top-down method…………………………………………….…37 1.8.2 Button-up method……………………………………………......39 1.9 Nanopatterning by Block Copolymer Self-assembly…………….....40 1.9.1 Surface-induced Orientation……………………………………..41 1.9.2 Temperature Gradient-induced Orientation………………….…..42 1.9.3 Evaporation of Solvent-induced Orientation…………………….43 Chapter 2 Objectives…………………………………………….…….46 Chapter 3 Experimental Details………………………………………49 3.1 Synthetic Methods…..........................................................................49 3.1.1 Materials………………………………………………………....49 3.1.2 Preparation of Double-Headed Initiator (DHI-Cl)………………52 3.1.3 Synthesis of Hydroxyl-terminated Polystyrene, PS-OH………...53 3.1.4 Copolymerization of PS-PHB BCPs…………………………….53 3.1.5 Preparation of PLLA and PDLA Macroinitiators, PLLA-Cls and PDLA-Cls……………………………………………………….56 3.1.6 Synthesis of P4VP-PLLA and P4VP-PDLA BCPs*…….………56 3.2 Preparation of PS-PHB, P4VP-PLLA and P4VP-PDLA Bulk Samples……………………………………………………….…………59 3.3 Preparation of P4VP-PLLA and P4VP-PDLA Dilute Solutions……60 3.4 Preparation of PS-PHB Nanopatterning in Thin Film………………61 3.5 Characterization of Thermal Properties and Nanostructures………..61 Chapter 4 Results and Discussion………………………………...…..65 4.1 Synthesis and Characterization of P4VP-PLLA and P4VP-PDLA BCPs*…………………………………………………...………….65 4.1.1 Synthesis of PLLA-Cls and PDLA-Cls………………..……….66 4.1.2 Synthesis of P4VP-PLLA and P4VP-PDLA BCPs*………..….67 4.1.3 Characterization of P4VP-PLLA and P4VP-PDLA BCPs*……70 4.1.4 Chiral Information Transfer in Self-assembly of BCPs*…........71 4.1.4.1 Helical Conformations……………………………………..71 4.1.4.2 Helical Superstructures…………………………………….75 4.1.4.3 Helical Phase……………………………………...……….80 4.1.5 Handedness Control of Helical Architectures………………….84 4.1.6 Hypothesis for Formation of Right- and Left-handed Helical Superstructures………………………………………………….86 4.2 Synthesis and Characterization of PS-PHB Achiral BCPs………….88 4.2.1 Synthesis of Hydroxyl-terminated Polystyrene, PS-OH…….…88 4.2.2 Copolymerization of PS-PHB Achiral BCPs……………….….89 4.2.3 Characterization of PS-PHB Achiral BCPs…………………….92 4.2.3.1 Thermal Properties of PS-PHB Achiral BCPs…………..…92 4.2.3.2 Nanostructured Materials of PS-PHB Achiral BCPs from Self-assembly in Bulk…………………………………….94 4.2.3.3 Nanopatterns of PS-PHB Achiral BCPs from Self-assembly in Thin Film………………………………………………98 Chapter 5 Conclusions……………………………………………….107 Chapter 6 References………………………………………………...109

    1. Whitesides, G.M.; Grzybowski, B. Science 2002, 295, 2418.
    2. Lehn, J.M. Supramolecular Chemistry. Concepts and Perspectives, VCH, Weinheim, 1995.
    3. Clark, T.D.; Tien, J.; Duffy, D.C.; Paul, K.E.; Whitesides, G.M. J. Am. Chem. Soc. 2001, 123, 7677.
    4. Jakubith, S.; Rotermund, H.H.; Engel, W.; Von O.A.; Ertl, G. Phys. Rev. Lett. 1990, 65, 3013.
    5. Whitesides, G.M.; Ismagilov, R.F. Science 1999, 284, 89.
    6. Bate, F. S.; Fredrickson, G. H.; Annu. Rev. Phys. Chem. 1990, 41, 525.
    7. Park, C.; Yoon, J.; Thomas, E.L. Polymer 2003, 44, 6725.
    8. Muthukumar M.; Ober C.K.; Thomas E.L. Science 1997, 277, 1225.
    9. Lodge, T.P. Macromol Chem Phys 2003, 204, 265.
    10. Matsen, M.W.; Bates, F.S. Macromolecules 1996, 29, 7641.
    11. Gast, A.P.; Hall, C.K.; Russel, W.B. J Colloid Interface Sci 1983, 96, 251.
    12. Bates, F.S.; Fredrickson, G.H. Phys Today 1999, 52, 32.
    13. Fasolka, M.; Mayes, A.M. Ann. Rev. Mater. Res. 2001, 31, 323.
    14. Zheng, W.; Wang, Z,G. Macromolecules 1995, 28, 7215.
    15. Abetz, V.; Supramolecular polymers. New York: Marcel Dekker, 2000. Chapter 6.
    16. Hashimoto, T.; Tsutsumi, K.; Funaki, Y. Langmuir 1997, 13, 6869.
    17. Discher, D.E.; Eisenberg, A. Science 2002, 297, 967.
    18. Lodge, T.P.; Abbas, S.et al. Macromolecular 2007, 40, 4048.
    19. Cornelissen, J.J.L.M.; Donners, J.J.J.M.; Gelder, R.E.; Graswinckel, W.S.; Metselaar, G.A.; Rowan, A.E.; Sommerdijk, N.A.J.M.; Nolte, R.J.M. Science 2001, 293, 676.
    20. Nelson, J.C.; Saven, J.G.; Moore, J.S.; Wolynes, P.G. Science 1997, 277, 1793.
    21. Mio, M.J.; Prince, R.B.; Moore, J.S.; Kuebel, C.; Martin, D.C. J. Am. Chem. Soc. 2000, 122, 6134.
    22. Prince, R.B.; Brunsveld, L.; Meijer, E.W.; Moore, J.S. Angew. Chem. Int. Ed. 2000, 39, 228.
    23. Lokey, R.S.; Iverson, B.L. Nature 1995, 375, 303.
    24. Hanan, G.S.; Lehn, J.M.; Kyritsakas, N.; Fischer, J. J. Chem. Soc. Chem. Commun. 1995, 765.
    25. Cuccia, L.A.; Lehn, J.M.; Homo, J.C.; Schmutz, M. Angew. Chem. Int. Ed. 2000, 39, 233.
    26. Sone, E.D.; Zubarev, E.R.; Stupp, S.I. Angew. Chem. Int. Ed. 2002, 41, 1705.
    27. Li, C.Y.; Cheng, S.Z.D.; Ge, J.J.; Bai, F.; Zhang, J.Z.; Mann I.K.; Harris, F.W.; Chien, L.C.; Yan, D.; He, T.; Lotz, B. Phys. Rev. Lett. 1999, 83, 4558.
    28. Li, C.Y.; Yan, D.; Cheng, S.Z.D.; Ge, J.J.; Bai, F.; Zhang, J.Z.; Mann, I.K.; Chien, L.C.; Harris, F.W.; Lotz, B. J. Am. Chem. Soc. 2000, 122, 72.
    29. Stadler, R.; Auschra, C.; Beckmann, J.; Krappe, U.; Voigt, M.I.; Leibler, L. Macromolecules 1995, 28, 3080.
    30. Krappe, U.; Stadler, R.; Voigt, M.I. Macromolecules 1995, 28, 4558.
    31. Goldacker, T.; Abetz, V.; Stadler, R.; Erukhimovich, I.; Leibler, L. Nature 1999, 398, 137.
    32. Sommerdijk, N.A.J.M.; Holder, S.J.; Hiorns, R.C.; Jones, R.G.; Nolte, R.J.M. Macromolecules 2000, 33, 8289.
    33. Yashima, E.; Huang, S.; Matsushima, T.; Okamoto, Y. Macromolecules 1995, 28, 4184.
    34. Yashima, E.; Matsushima, T.; Okamoto, Y. J. Am. Chem. Soc. 1997, 119, 6345.
    35. Cornelissen, J.J.L.M.; Fischer, M.; Sommerdijk, N.J.M.; Nolte, R.J.M. Science, 1998, 280, 1427.
    36. Sakurai, S.I.; Kuroyanagi, K.; Morino, K.; Kunitake, M.; Yashima, E. Macromolecules 2003, 36, 9670..
    37. Wikipedia, http://en.wikipedia.org/
    38. Cheng, C.K. PhD. Thesis at Tsing Hua Universaty, Taiwain 2009
    39. Ho, R.M.; Chiang, Y.W.; Tsai, C.C.; Lin, C.C.; Ko, B.T.; Huang, B.H. J. Am. Chem. Soc. 2004, 126, 2704.
    40. Zalusky, A.S.; Olayo, V.R.; Taylor, C.J.; Hillmyer, M.A.J. Am. Chem. Soc. 2001, 123, 1519.
    41. Zalusky, A.S.; Olayo, V.R.; Wolf, J.H.; Hillmyer, M.A. J. Am. Chem. Soc. 2002, 124, 12761.
    42. Hajduk, D.A.; Takenouchi, H.; Hillmyer, M.A.; Bates, F.S.; Vigild, M.E.; Almdal, K. Macromolecules 1997, 30, 3788.
    43. Hajduk, D.A.; Ho, R.M.; Hillmyer, M.A.; Bates, F.S.; Almdal, K. J. Phys. Chem. B 1998, 102, 1356.
    44. Adachi, M.; Okumura, A.; Sivaniah, E.; Hashimoto, T. Macromolecules 2006, 39, 6352.
    45. Xu, J.T.; Fairclough, J.P.A.; Mai, S.M.; Ryan, A.J.; Chaibundit, C. Macromolecules 2002, 35, 6937.
    46. Loo, Y.L.; Register, R.A.; Ryan, A.J. Macromolecules 2002, 35, 2365.
    47. Ho, R.M.; Lin, F.H.; Tsai, C.C.; Lin, C.C.; Ko, B.T.; Hsiao, B.S.; Sics, I. Macromolecules 2004, 37, 5985.
    48. Ishikawa, S. Polymer 1993, 34, 3744.
    49. Cohen, R.E.; Cheng, P.L.; Douzinas, K.; Kofinas, P.; Berney, C. V. Macromolecules 1990, 23, 324.
    50. Loo, Y. L.; Register, R. A.; Ryan, A. J. Macromolecules 2002, 35, 2365.
    51. Chiang, Y.W.; Ho, R.M.; Ko, B.T.; Lin, C.C. Angew. Chem. Int. Ed. 2005, 44, 7969.
    52. Chiang, Y.W.; Ho, R.M.; Thomas, E.L.; Burger, C.; Hsiao, B.S. Adv. Funct. Mater. 2009, 19, 448.
    53. Guha, S.; Drew, M.G.B.; Banerjee, A. small 2008, 4, 1993.
    54. Messmore, B.W.; Sukerkar, P.A.; Stupp, S.I. J. Am. Chem. Soc. 2005, 127, 7992.
    55. Li, C.Y.; Cheng, S.Z.D.; Weng, X.; Ge, J.J.; Bai, F.; Zhang, J.Z.; Calhoun, B.H.; Harris, F.W.; Chien, L.C.; Lotz, B. J. Am. Chem. Soc. 2001, 123, 2462.
    56. Lotz, B.; Cheng, S.Z.D. Polymer 2005, 46, 577.
    57. Yashima, E.; Miyagawa, T.; Furuko, A.; Maeda, K.; Katagiri, H.; Furusho,Y. J. Am. Chem. Soc. 2005, 127, 5018.
    58. Yashima, E.; Kento, O.; Sakurai, S.; Ohsawa, S.; Kumaki, J. Angew. Chem. Int. Ed. 2006, 45, 8173.
    59. Yang, P.; Wirnsberger, G.; Huang, H. C.; Cordero, S. R.; McGehee, M. D.; Scott, B.; Deng, T.; Whitesides, G. M.; Chmelka, B. F.; Buratto, S. K.; Stucky, G. D. Science 2000 , 287, 465.
    60. Unger, M. A.; Chou, H. P.; Thorsen, T.; Scherer, A.; Quake, S. R. Science 2000, 288, 113.
    61. Dagata, J. A.; Schneir, J.; H.; Harary, H. H.; Evans, C. J.; Postek, M. T.; Bennett, J. Appl. Phys. Lett. 1990, 56, 2001.
    62. Eigler, D. M. and Schweizer, E. K. Nature, vol. 344, p. 524, 1990.
    63. Snow, E. S.; Campbell, P. M.; Perkin, F. K. Pro. IEEE 1997, 85, 601.
    64. Broers, A. N.; Molzen, W.; Cuomo, J.; Wittels, N. Appl. Phys. Lett. 1976, 29, 596.
    65. Martin, J.I.; Velez, M.; Morales, R. J. Magn. Mater. 2002, 249, 156.
    66. Hyde, S.; Anderson, S., Larsson, K; Blum, Z; Landh, T; Lidin, S; Ninham, B.W. The language of shape. New York: Elsevier; 1997.
    67. Ball, P. Made to Measure. Biomaterials, 1997. New York, Chapter 4, Only natural.
    68. Rapaport, H.; Moller, G.; Knobler, C.M; Jensen, T.R.; Kjaer, K.; Leiserowitz, L.; Tirrell, D.A. J Am Chem Soc 2002, 124, 9342.
    69. Van Dijk, M. A.; van den Berg, R. Macromolecules 1995, 28, 6773.
    70. Mansky, P.; Liu, Y.; Huang, E.; Russell, T. P.; Hawker, C. Science 1997, 275, 1458.
    71. Huang, E.; Rockford, L.; Russell, T. P.; Hawker, C. J. Nature 1998, 395, 757.
    72. Hashimoto, T.; Bodycomb, J.; Funaki, Y.; Kimishima, K. Macromolecules 1999, 32, 952.
    73. Kim, G.; Libera, M. Macromolecules 1998, 31, 2569.
    74. Ho, R.M.; Tseng, W.H.; Fan, H.W.; Chiang, Y.W.; Lin, C.C.; Ko, B.T.; Huang, B.H. Polymer, 2005, 46, 9362.
    75. Matyjaszewski, K.; Xia, J.H. Chem. Rev. 2001, 101, 2921.
    76. James, E. Mark, Physical properties of polymers handbook PART III THERMODYNAMIC PROPERTIES, American Institute of Physics (AIP), Woodbury, New York, 1996.
    77. Zhong-can, O.Y.; Jixing, L. Phys. Rev. Lett. 1990, 65, 1679.
    78. Zhong-can, O.Y.; Jixing, L. Phys. Rev. A 1991, 43, 6826.
    79. Bagchi, B.; Nandi, N. J. Am. Chem. Soc. 1996, 118, 11208.
    80. Takezoe, H; Takanishi, Y. Jpn. J. Appl. Phys. 2006, 45, 597.
    81. Mikio,T; Marchessault, R.H. Biol Macromol 1999, 25, 207.
    82. Lin, Z; Kim, D.H.; Wu, X.; Boosahda, L.; Stone, D.; LaRose, L.; et al. Adv Mater 2002, 14, 1373.
    83. Kim, S.H.; Misner, M.J.; Xu, T.; Kimura, M.; Russell, T.P. Adv Mater 2004, 16, 226.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE