簡易檢索 / 詳目顯示

研究生: 吳家銘
論文名稱: 台灣眼鏡蛇毒金屬酵素之純化及活性分析
Identification of a Mocarhagin-like Metalloprotease from Taiwan Cobra with Cobrin-like amino acid sequence
指導教授: 吳文桂
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2005
畢業學年度: 93
語文別: 中文
中文關鍵詞: 金屬蛋白酵素
外文關鍵詞: Mocarhagin, Metalloprotease, Cobrin
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去的蛇毒金屬蛋白酵素大部分都發現在出血性的蛇毒,在神經性的毒蛇找到的只有幾種,又多以眼鏡蛇為主。而眼鏡蛇中金屬蛋白酵素作用主要與免疫系統相關和凝血系統相關,其中Cobrin被指出和引發發炎的補體系統相關;Kaouthiagin和凝血系統中的溫韋伯氏因子(vWF)有作用;Mocarhagin則會切白血球表面的PSGL-1和血小板表面的GPIbα,PSGL-1為各種白血球由血液進入組織重要的配體。而GPIbα則有和vWF結合的能力。
    本實驗針對台灣眼鏡蛇毒進行篩選,找到一種金屬酵素,並利用胺基的序列比對,確定了在台灣眼鏡蛇中蛇毒金屬蛋白的存在。其包含的金屬離子為三個鈣離子及一個鋅離子。這個新的金屬酵素對於具有硫化的PSGL-1,有較強的分解能力,由此推測此蛋白可能作用在發炎反應中白血球進到發炎組織滾動黏附的過程。


    Abstract

    Snake venom metalloprotease (SVMP) found in the past is mostly in the hemorrhagic snake venom. Several recent reports indicate that SVMP may also be present in snake venom known to mainly perturb nerve systems. Most of them are found in cobra venom. The function of SVMP in cobra is mainly concerned with immune system and Hemostatic system. Belonging to one of two system, Cobrin is regarded to be related to complement system which triggers inflammation, Kaouthiagin reacts with von Willebrand factor, vWF, in Hemostatic system, and Mocarhagin is able to digest PSGL-1 of neutrophils and GPIbα of platelet. PSGL-1 is an important ligand which affect each type of neutrophils to enter endothelial surface. Furthermore, GPIbα has the ability to bind with vWF.
    In this thesis we screen the possible existence of SVMP in Taiwan Cobra by monitoring fibrinogenolytic activity. A new SVMP with Mocarhagin-like activity, but with Cobrin-like sequence, is identified. This protein contains Ca2+ and Zn2+ with molar ratio of about 3 to 1. Taiwan SVMP exhibits stronger protease activity against sulfated PSGL-1 than non-sulfated one. It is suggested that SVMP from Taiwan Cobra functions by perturbing the rolling and adhesion of neutrophils at the site of inflammation.

    目錄 一 、 序論 1-1 蛇毒和蛇毒金屬蛋白酵素 1 1-1-1 蛇毒簡介 1 1-1-1.1 蛇毒的分類 1 1-1-1.2 蛇毒的成分 1 1-1-2 蛇毒蛋白酵素 2 1-1-3 蛇毒金屬蛋白酵素 3 1-1-3.1 蛇毒金屬蛋白酵素的結構 4 1-1-3.2 蛇毒金屬蛋白酵素的分類 4 1-1-3.3 蛇毒金屬蛋白酵素的功能 5 1-1-4 蛇毒金屬蛋白酵素 7 1-1-4.1 Mocarhagin 7 1-1-4.2 Cobrin 8 1-1-4.3 NN-PF3 8 1-1-4.4 Kaouthiagin 8 1-1-5 蛇毒金屬蛋白酵素的序列 9 1-2 蛇毒金屬蛋白和PSGL-1,selectin 15 1-2-1 內皮細胞黏附分子(Selectin) 15 1-2-2 PSGL-1(P-selectin glycoprotein ligand-1)介紹 17 1-2-2.1 PSGL-1的結構 17 1-2-2.2 PSGL-1和P-selectin 18 1-2-2.3 蛇毒的金屬蛋白酵素和PSGL-1 18 1-2-3 硫化對PSGL-1的重要性 19 1-2-4 對PSGL-1有類似作用的蛋白 20 1-3 GPIb 23 1-3-1 GPIb的結構 23 1-3-2 GPIb和血液凝集(Haemostasis) 24 1-3-3 GPIb、血液凝集和蛇毒蛋白 26 1-4 其他相關的金屬蛋白酵素和作用 29 1-4-1 出血性蛇毒造成的局部組織致病性(pathogenesis)29 1-4-1.1 出血性(hemorrhagic effect) 29 1-4-1.2 骨骼肌的壞死和損壞肌肉的再生 31 1-4-1.3 水泡(Blister)的形成和發炎(inflammation) 31 1-4-2 相關的金屬蛋白酵素的作用 32 1-4-2.1 Basparin A 32 1-4-2.2 Neuwiedase 33 1-4-2.3 Mikarin 33 二 、 材料和方法 2-1 材料 37 2-2 蛇毒金屬蛋白酵素的純化 39 2-3. 蛇毒金屬蛋白酵素的鑑定 40 三 、 結果 47 3-1 台灣眼鏡蛇的金屬蛋白酵素純化 47 3-2 金屬蛋白酵素活性和相關性質的測試 47 3-2-1 分解纖維蛋白原(fibrinogen)的活性的測試 47 3-2-2 價金屬離子對分解纖維蛋白原(fibrinogen)的活性的影響 47 3-2-3 蛋白酵素抑制劑(protease inhibitor)對分解纖維蛋白原(fibrinogen)的活性的影響 48 3-3 PSGL-1的分解活性 48 3-3-1 鑑定切斷後PSGL-1的片段 48 3-3-2 硫化後的PSGL-1短□鍊 被Cobrin-like protein分解的影響 49 3-3-2.1 硫化PSGL-1的合成和純化 49 3-3-2.2 硫化PSGL-1 對Cobrin-like protein作用的影響 49 3-4 蛇毒金屬蛋白酵素金屬含量 49 四 、 附錄 60

    1-1
    1. Tu A. T. Overview of snake venom chemistry Adv. Exp. Med. Biol.
    1996;391:37-62. Review.
    2. Ouyang C., Teng C.M., Huang T.F. Characterization of snake venom
    principles affecting blood coagulation and platelet aggregation Adv.
    Exp. Med. Biol. 1990;281:151-63. Review.
    3. Pirkle H., Theodor I. Thrombin-like venom enzymes: structure
    and function Adv. Exp. Med. Biol. 1990;281:165-75. Review.
    4. Pirkle H. Thrombin-like enzymes from snake venoms: an updated inventory. Scientific and Standardization Committee's Registry of Exogenous Hemostatic Factors. Thromb. Haemost. 1998 Mar;79(3):675-83.
    5. Bjarnason J.B., Fox J.W. Snake venom metalloendopeptidases:
    Reprolysins. Methods Enzymol. 1995;248:345-68. Review.
    6. Marsh N. Inventory of haemorrhagic factors from snake venoms.
    Thromb. Haemost. 1994 Jun;71(6):793-7. Review.
    7. Iwanaga S., Takeya H., Imahori K., Sakiyama F.(Eds.) Structure and
    function of snake venom metalloproteinase family in Methods in
    Protein Sequence Analysis. Plenum Press New York 1993;107-115.
    8. Hite L.A., Jia L.G., Bjarnason J.B., Fox J.W. cDNA sequences for four
    snake venom metalloproteinases: structure, classification, and their
    relationship to mammalian reproductive proteins. Arch. Biochem.
    Biophys. 1994 Jan;308(1):182-91.
    9. Hamako J., Matsui T., Nishida S., Nomura S., Fujimura Y.,Ito M., zeki
    Y., Titani K. Purification and characterization of kaouthiagin, a von
    Willebrand factor-binding and -cleaving metalloproteinase from Naha
    kaouthia cobra venom. Thromb. Haemost. 1998 Sep;80(3):499-505.
    10. McLane M.A., Marcinkiewicz C., Vijay-Kumar S.,
    Wierzbicka-Patynowski I., Niewiarowski S. Viper venom disintegrins
    and related molecules. Proc. Soc. Exp. Biol. Med. 1998 Nov;219(2):109-19. Review.
    11. Kamiguti A.S., Gallagher P., Marcinkiewicz C., Theakston R.D.,
    Zuzel M., Fox J.W. Identification of sites in the cysteine-rich domain
    of the class P-III snake venom metalloproteinases responsible for
    inhibition of platelet function. FEBS Lett. 2003 Aug. 14;549(1-3):129-34.
    12. Takeya H., Nishida S., Miyata T., Kawada S., Saisaka Y., Morita T., Iwanaga S. Coagulation factor X-activating enzyme from Russell's viper venom, (RVV-X), a novel metalloproteinase with disintegrin (platelet aggregation inhibitor)-like and C-type lectin-like domains. J. Biol. Chem. 1992 Jul 15;267(20):14109-17
    13. Yamada D., Sekiya F., Morita T. Isolation and characterization of carinactivase, a novel prothrombin activator in Echis carinatus venom with a unique catalytic mechanism. J. Biol. Chem. 1996 Mar 1;271(9):5200-7.
    14. Kumasaka T., Yamamoto M., Moriyama H., Tanaka N., Sato M., Katsube Y., Yamakawa Y., Omori-Satoh T., Iwanaga S., Ueki T. Crystal structure of H2-proteinase from the venom of Trimeresurus favoviridis. J. Biochem. (Tokyo). 1996 Jan;119(1):49-57.
    15. Tortorella M.D., Pratta M.A., Fox J.W., Arner E.C. The interglobular domain of cartilage aggrecan is cleaved by hemorrhagic metalloproteinase HT-d (atrolysin C) at the matrix metalloproteinase and aggrecanase sites. J. Biol. Chem. 1998 Mar 6;273(10):5846-50
    16. Trummal K., Tonismagi K., Siigur E., Aaspollu A., Lopp A., Sillat T., Saat R., Kasak L., Tammiste I., Kogerman P., Kalkkinen N., Siigur J. A novel metalloprotease from Vipera lebetina venom induces human endothelial cell apoptosis. Toxicon. 2005 Jul;46(1):46-61.
    17. Mazzi M.V., Marcussi S., Carlos G.B., Stabeli R.G., Franco J.J., Ticli F.K., Cintra A.C., Franca S.C., Soares A.M., Sampaio S.V. A new hemorrhagic metalloprotease from Bothrops jararacussu snake venom: isolation and biochemical characterization. Toxicon. 2004 Aug;44(2):215-23
    18. Saidi N., Samel M., Siigur J., Jensen P.E. Lebetase, an alpha(beta)-fibrin(ogen)olytic metalloproteinase of Vipera lebetina snake venom, is inhibited by human alpha-macroglobulins. Biochim Biophys Acta. 1999 Sep 14;1434(1):94-102
    19. Millichip M.I., Dallas D.J., Wu E., Dale S., McKie N. The metallo-disintegrin ADAM10 (MADM) from bovine kidney has type IV collagenase activity in vitro. Biochem Biophys. Res. Commun. 1998 Apr 17;245(2):594-8.
    20. Osaka A., Just M., Habermann E. Action of snake venom hemorrhagic principles on isolated glomerular basement membrane. Biochim. Biophys. Acta. 1973 Oct 25;323(3):415-28.
    21. Garcia L.T., Parreiras e Silva L.T., Ramos O.H., Carmona A.K., Bersanetti P.A., Selistre-de-Araujo H.S. The effect of post-translational modifications on the hemorrhagic activity of snake venom metalloproteinases. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 2004 May;138(1):23-32.
    22. Tseng Y.L., Lee C.J., Hsu C.C., Huang T.F. Triflamp, a snake venom metalloproteinase, reduces neutrophil-platelet adhesion through proteolysis of PSGL-1 but not glycoprotein Ib alpha. Thromb. Haemost. 2004 Jun;91(6):1177-85.
    23. Tseng Y.L., Wu W.B., Hsu C.C., Peng H.C., Huang T.F. Inhibitory effects of human alpha2-macroglobulin and mouse serum on the PSGL-1 and glycoprotein Ib proteolysis by a snake venom metalloproteinase, triflamp. Toxicon. 2004 Jun 1;43(7):769-77.
    24. Markland F. S. Jr. Fibrin(ogen)olytic enzymes from snake venoms.
    Hemostasis and Animal Venoms 1988:149-172.
    25. Randolph A., Chamberlain S.H., Chu H.L., Retzios A.D. Markland F.S. Jr, Masiarz F.R. Amino acid sequence of fibrolase, a direct-acting fibrinolytic enzyme from Agkistrodon contortrix contortrix venom. Protein. Sci. 1992 May;1(5):590-600.
    26. Bolger M.B., Swenson S., Markland F.S. Jr. Three-dimensional structure of fibrolase, the fibrinolytic enzyme from southern copperhead venom, modeled from the X-ray structure of adamalysin II and atrolysin C. AAPS PharmSci. 2001;3(2):E16.
    27. Ward C.M., Vinogradov D.V., Andrews R.K., Berndt M.C. Characterization of mocarhagin, a cobra venom metalloproteinase from Naja mocambique mocambique, and related proteins from other Elapidae venoms. Toxicon. 1996 Oct;34(10):1203-6.
    28. Takeya H., Onikura A., Nikai T., Sugihara H., Iwanaga S. Primary structure of a hemorrhagic metalloproteinase, HT-2, isolated from the venom of Crotalus ruber ruber. J. Biochem. (Tokyo). 1990 Nov;108(5):711-9.
    29. Datta G., Dong A., Witt J., Tu AT. Biochemical characterization of basilase, a fibrinolytic enzyme from Crotalus basiliscus basiliscus. Arch Biochem Biophys. 1995 Mar 10;317(2):365-73.
    30. Willis T.W., Tu A.T. Purification and biochemical characterization of atroxase, a nonhemorrhagic fibrinolytic protease from western diamondback rattlesnake venom. Biochemistry. 1988 Jun 28;27(13):4769-77
    31. Siigur E., Siigur J. Purification and characterization of lebetase, a fibrinolytic enzyme from Vipera lebetina (snake) venom. Biochim Biophys Acta. 1991 Jul 8;1074(2):223-9.
    32. Pretzer D., Schulteis B., Vander Velde D.G., Smith C.D., Mitchell J.W., Manning M.C. Effect of zinc binding on the structure and stability of fibrolase, a fibrinolytic protein from snake venom. Pharm .Res. 1992 Jul;9(7):870-7.
    33. O'Keefe M.C., Caporale L.H., Vogel C.W. A novel cleavage product of human complement component C3 with structural and functional properties of cobra venom factor. J. Biol. Chem. 1988 Sep 5;263(25):12690-7.
    34. Bambai Bijan. Purification, Cloning, and Expression of Cobrin, A C3-cleaving Metalloprotease from Venom of Cobra 1998
    35. Jagadeesha D.K., Shashidhara murthy R., Girish K.S., Kemparaju K. A non-toxic anticoagulant metalloprotease: purification and characterization from Indian cobra (Naja naja naja) venom. Toxicon. 2002 Jun;40(6):667-75.
    36. Sarkar N.K. Action mechanism of cobra venom, cardiotoxin and allied substances on muscle contraction. Proc. Soc. Exp. Biol. Med. 1951 Nov;78(2):469-71.
    37. Couteaux R., Mira J.C., d’Albis A. Regeneration of muscles after cardiotoxin injury. Cytological aspects. Biol. Cell 1988; 62: 171–82.
    38. Bougis P., Tessier M., Van Rietschoten J., Rochat H., Faucon J.F. Dufourcq J.Are interactions with phospholipids responsible for pharmacological activities of cardiotoxins? Mol. Cell. Biochem. 1983;55(1):49-64.
    39. Hamako J., Matsui T., Nishida S., Nomura S., Fujimura Y., Ito M., Ozeki Y., Titani K. Purification and characterization of kaouthiagin, a von Willebrand factor-binding and -cleaving metalloproteinase from Naha kaouthia cobra venom.Thromb. Haemost. 1998 Sep;80(3):499-505
    40. Miura S., Sakurai Y., Takatsuka H., Yoshioka A., Matsumoto M., Yagi H., Kokubo T., Ikeda Y., Matsui T., Titani K., Fujimura Y. Total inhibition of high shear stress induced platelet aggregation by homodimeric von Willebrand factor A1-loop fragments. Br. J. Haematol. 1999 Jun;105(4):1092-100.
    41. Ito M, Hamako J., Sakurai Y., Matsumoto M., Fujimura Y., Suzuki M., Hashimoto K., Titani K., Matsui T. Complete amino acid sequence of kaouthiagin, a novel cobra venom metalloproteinase with two disintegrin-like sequences. Biochemistry. 2001 Apr 10;40(14):4503-11
    1-2
    . Zimmerman G.A. McIntyre T.M. Prescott S.M. Adhesion and
    signaling in vascular cell–cell interactions. J. Clin. Invest. 1997 Dec
    1;100(11 Suppl):S3-5. Review.
    2. Martinez M. Joffraud M. Giraud S. Baisse B. Bernimoulin M.P.
    Schapira M. Spertini O. Regulation of PSGL-1 interactions with
    L-selectin P-selectin and E-selectin: role of human
    ucosyltransferase-IV and -VII. J. Biol. Chem. 2005 Feb
    18;280(7):5378-90.
    3. Norgard K.E., Moore K.L., Diaz S., Stults N.L., Ushiyama S., McEver
    R.P., Cummings R.D., Varki A. Characterization of a specific ligand for
    P-selectin on myeloid cells. A minor glycoprotein with sialylated
    O-linked oligosaccharides. J Biol Chem. 1993 Jun
    15;268(17):12764-74.
    4. Ward C.M., Andrews R.K., Smith A.I., Berndt M.C. Mocarhagin, a
    novel cobra venom metalloproteinase, cleaves the platelet von
    Willebrand factor receptor glycoprotein Ibalpha. Identification of the
    sulfated tyrosine/anionic sequence Tyr-276-Glu-282 of glycoprotein
    Ibalpha as a binding site for von Willebrand factor and alpha-thrombin.
    Biochemistry. 1996 Apr 16;35(15):4929-38.
    5. Sako D., Chang X.J., Barone K.M., Vachino G., White H.M., Shaw G.,
    Veldman G.M., Bean K.M., Ahern T.J., Furie B., et al. Expression
    cloning of a functional glycoprotein ligand for P-selectin. Cell. 1993
    Dec 17;75(6):1179-86.
    6. Guyer D.A., Moore K.L., Lynam E.B., Schammel C.M., Rogelj S.,
    McEver R.P., Sklar L.A. P-selectin glycoprotein ligand-1 (PSGL-1) is a
    ligand for L-selectin in neutrophil aggregation. Blood. 1996 Oct
    1;88(7):2415-21.
    7. Wilkins P.P., Moore K.L., McEver R.P., Cummings R.D. Tyrosine
    sulfation of P-selectin glycoprotein ligand-1 is required for high
    affinity binding to P-selectin. J. Biol. Chem. 1995 Sep
    29;270(39):22677-80.
    8. Gardiner E.E., De Luca M., McNally T., Michelson A.D., Andrews
    R.K., Berndt M.C. Regulation of P-selectin binding to the neutrophil
    P-selectin counter-receptor P-selectin glycoprotein ligand-1 by
    neutrophil elastase and cathepsin G. Blood. 2001 Sep 1;98(5):1440-7.
    9. Sako D., Comess K.M., Barone K.M., Camphausen R.T., Cumming
    D.A., Shaw G.D. A sulfated peptide segment at the amino terminus of
    PSGL-1 is critical for P-selectin binding. Cell. 1995 Oct
    20;83(2):323-31.
    10. Pouyani T., Seed B. PSGL-1 recognition of P-selectin is controlled by
    a tyrosine sulfation consensus at the PSGL-1 amino terminus.
    Cell. 1995 Oct 20;83(2):333-43.
    11. Rodgers S.D., Camphausen R.T., Hammer D.A. Tyrosine sulfation
    enhances but is not required for PSGL-1 rolling adhesion on
    P-selectin. Biophys. J. 2001 Oct;81(4):2001-9.
    12. Moore K.L., Stults N.L., Diaz S., Smith D.F., Cummings R.D., Varki
    A., McEver R.P. 1992. Identification of a specific glycoprotein ligand
    for P-selectin (CD62) on myeloid cells. J. Cell Biol. 1992
    Jul;118(2):445-56.
    13. Wilkins P.P., McEver R.P., Cummings R.D..1996. Structures of the
    O-glycans on P-selectin glycoprotein ligand-1 from HL-60 cells. J.
    Biol. Chem. 1996 Aug 2;271(31):18732-42.
    1-3
    1. Lopez J.A. The platelet glycoprotein Ib-IX complex.
    Blood Coagul Fibrinolysis. 1994 Feb;5(1):97-119. Review.
    2. Andrews R.K., Lopez J.A., Berndt M.C. Molecular mechanisms of
    platelet adhesion and activation. Int. J. Biochem. Cell Biol. 1997
    Jan;29(1):91-105. Review.
    3. Markland F.S. Snake venoms and the hemostatic system. Toxicon.
    1998 Dec;36(12):1749-800. Review.
    4. Andrews R.K., Gardiner E.E., Shen Y., Berndt M.C. Structure-activity
    relationships of snake toxins targeting platelet receptors, glycoprotein
    Ib-IX-V and glycoprotein VI. Curr. Med. Chem. Cardiovasc. Hematol.
    Agents. 2003 Jun;1(2):143-9. Review.
    5. Andrews, R.K., Munday, A.D., Mitchell, C.A., Berndt, M.C.
    Interaction of calmodulin with the cytoplasmic domain of the platelet
    membrane glycoprotein Ib-IX-V complex.Blood. 2001 Aug
    1;98(3):681-7.
    6. Kahn M.L., Diacovo T.G., Bainton D.F., Lanza F., Trejo J., Coughlin
    S.R. Glycoprotein V-deficient platelets have undiminished thrombin
    responsiveness and Do not exhibit a Bernard-Soulier phenotype.
    Blood. 1999 Dec 15;94(12):4112-21.
    7. Andrews R.K., Suzuki-Inoue K., Shen Y., Tulasne D., Watson S.P.,
    Berndt M.C. Interaction of calmodulin with the cytoplasmic domain of
    platelet glycoprotein VI. Blood. 2002 Jun 1;99(11):4219-21.
    8. Ward C.M., Vinogradov D.V., Andrews R.K., Berndt M.C.
    Characterization of mocarhagin, a cobra venom metalloproteinase from
    Naja mocambique mocambique, and related proteins from other
    Elapidae venoms. Toxicon. 1996 Oct;34(10):1203-6.
    9. Kini R.M. Are C-type lectin-related proteins d
    erived by proteolysis of metalloproteinase/disintegrin precursor
    proteins? Toxicon. 1996 Nov-Dec;34(11-12):1287-94.
    10. Atkinson B.T., Stafford M.J., Pears C.J., Watson S.P. Signalling
    events underlying platelet aggregation induced by the glycoprotein VI
    agonist convulxin.Eur J Biochem. 2001 Oct;268(20):5242-8.
    1-4
    1. Bkarnason J.B., Fox J.W., Hemorrhagic metalloproteinase from snake
    venoms, Pharmacol. Ther. 1994;61:325~372
    2. Ownby C.L., Pathology of rattlensnake envenomation, in:Tu A. T.(ed),
    Rattlensnake Venoms. Their Actions and Treatment, Marcel Dekker.
    New Tork. 1982;163-209
    3. Mc Kay D.G., Moroz C., De Vries A., Csavossy I., Cruse V., The action
    of hemorrhagin and phospholipase derived from Vipera palestinase
    venom on the microcirculation. Lab. Invest. 1970 May;22(5):387-99.
    4. Ownby C.L., Bjarnason J.B., Tu A.T. Hemorrhagic toxins from
    rattlesnake (Crotalus atrox) venom. Pathogenesis of hemorrhage
    induced by three purified toxins. Am. J. Pathol. 1978
    Oct;93(1):201-18.
    5. Ownby C.L., Nikai T., Imai K., Sugihara H., Pathogenesis of
    hemorrhage induced by bilitoxin, a hemorrhagic toxin isolated
    from the venom of the common cantil (Agkistrodon bilineatus
    bilineatus). Toxicon. 1990;28(7):837-46.
    6. Ownby C.L., Geren C.R. Pathogenesis of hemorrhage induced by
    hemorrhagic proteinase IV from timber rattlesnake (Crotalus horridus
    horridus) venom. Toxicon. 1987;25(5):517-26.
    7. Rahmy T., Tu A.T., El-Banhawey M., El-Asmar M.F., Hassan F.M.
    Cytopathologic effect of Cerastes cerastes (Egyptian sand viper)
    venom and isolated hemorrhagic toxin on liver and kidney: an electron
    microscopic study. J. Nat. Toxins 1992;1: 45–58.
    8. Johnson E.K., Ownby C.L. Isolation of a hemorrhagic toxin from the
    venom of Agkistrodon contortrix laticinctus (broadbanded copperhead)
    and pathogenesis of the hemorrhage induced by the toxin in mice. Int.
    J. Biochem. 1993 Feb;25(2):267-78.
    9. Moreira L., Borkow G., Ovadia M., Guti□rrez J.M. Pathological
    changes induced by BaH1, a hemorrhagic proteinase isolated from
    Bothrops asper (terciopelo) snake venom, on mouse capillary blood
    Vessels. Toxicon. 1994 Aug;32(8):976-87.
    10. Ohsaka A., Suzuki K., Ohashi M. The spurting of erythrocytes
    through junctions of the vascular endothelium treated with snake
    venom. Microvasc. Res. 1975 Sep;10(2):208-13.
    11. Ohsaka A., Lee C.Y. Hemorrhagic, necrotizing and edema-forming
    effects of snake venoms. Handbook of Experimental Pharmacology.
    1979;52:480–546.
    12. Collins T., Cotran R.S., Kumar V. Acute and chronic inflammation.
    Pathologic Basis of Disease. 1999:50–88.
    13. Rucavado A., Lomonte B., Ovadia M., Guti□rrez J.M. Local tissue
    damage induced by BaP1, a metalloproteinase isolated from Bothrops
    asper (terciopelo) snake venom. Exp. Mol. Pathol. 1995
    Dec;63(3):186-99.
    14. Borkow G., Guti□rrez J.M., Ovadia M. In vitro activity of BaH-1, the
    main hemorhagic toxin of Bothrops asper snake venom on bovine
    endothelial cells. Toxicon. 1995;32:1387–1391.
    15. Masuda S., Araki S., Yamamoto T., Kaji K., Hayashi H. Purification
    of a vascular apoptosis-inducing factor from hemorrhagic snake
    venom, Biochem. Biophys. Res. Commun. 1997;235:59–63.
    16. Lukashev M.E., Werb Z., ECM signalling: orchestrating cell
    behaviour and misbehaviour. Trends Cell Biol. 1998;8:437–441.
    17. Guti□rrez J.M., Romero M., N□□ez J., Chaves F., Borkow G., Ovadia
    M. Skeletal muscle necrosis and regeneration after injection of BaH1,
    a hemorrhagic metalloproteinase isolated from the venom of the
    snake Bothrops asper (terciopelo). Exp. Mol. Pathol. 1995;62:28–41.
    18. Fabiano R., Tu A.T. Purification and biochemical study of viriditoxin,
    tissue damaging toxin, from prairie rattlesnake venom. Biochemistry
    1981;20:21–27.
    19. Rucavado A., Flores-S□nchez E., Franceschi A., Magalhaes A.,
    Guti□rrez J.M. Characterization of the local tissue damage induced by
    LHF-II, a metalloproteinase with weak hemorrhagic activity isolated
    from Lachesis muta muta snake venom. Toxicon 1999;37;1297–1312.
    20. Otero R., Tob□n G.S., G□mez L.F., Osorio R., Valderrama R., Hoyos
    D., Urreta J.E., Molina S.,Arboleda J.J. Accidente of□dico en
    Antioquia y Choc□. Aspectos cl□nicos y epidemiol□gicos, Acta
    M□dica Colombiana. 1992;17:229–249.
    21. Rucavado A., N□□ez J., Guti□rrez J.M. Blister formation and skin
    damage induced by BaP1, a haemorrhagic metalloproteinase from the
    venom of the snake Bothrops asper. Int. J. Exp. Pathol. 1998;79:
    245–254.
    22. Guti□rrez J.M., Romero M., D□az C., Borkow G., Ovadia M. Isolation
    and characterization of a metalloproteinase with weak hemorrhagic
    activity from the venom of the snake Bothrops asper (terciopelo).
    Toxicon 1995;33:19–29.
    23. Moura da Silva A.M., Laing G.D., Paine M.J.I., Dennison J.M.T.J.,
    Politi V., Crampton J.M., Theakston R.D.G. Processing of pro-tumor
    necrosis factor-α by venom metalloproteinases: a hypothesis
    explaining local tissue damage following snake bite. Eur. J. Immunol.
    1996;26: 2000–2005.
    24. Loria GD, Rucavado A, Kamiguti AS, Theakston RD, Fox JW, Alape
    A, Gutierrez JM. Characterization of 'basparin A,' a
    rothrombin-activating metalloproteinase, from the venom of the snake
    Bothrops asper that inhibits platelet aggregation and induces
    defibrination and thrombosis. Arch Biochem Biophys. 2003 Oct
    1;418(1):13-24.
    25. Rucavado A., Soto M., Kamiguti A.S., Theakston R.D., Fox J.W.,
    Escalante T., Gutierrez J.M. Characterization of aspercetin, a platelet
    aggregating component from the venom of the snake Bothrops asper
    which induces thrombocytopenia and potentiates
    metalloproteinase-induced hemorrhage. Thromb. Haemost. 2001
    Jan;85:710-711.
    26. Rodrigues V.M., Soares A.M., Guerra-Sa R., Rodrigues V., Fontes
    M.R., Giglio J.R. Structural and functional characterization of
    neuwiedase, a nonhemorrhagic fibrin(ogen)olytic metalloprotease
    from Bothrops neuwiedi snake venom. Arch. Biochem. Biophys. 2000
    Sep 15;381(2):213-24.
    27. Rodrigues V.M., Soares A.M., Andriao-Escarso S.H., Franceschi
    A.M., Rucavado A., Gutierrez J.M., Giglio J.R. Pathological
    alterations induced by neuwiedase, a metalloproteinase isolated from
    Bothrops neuwiedi snake venom. Biochimie. 2001 Jun;83(6):471-9.
    28. Gao R., Manjunatha Kini R., Gopalakrishnakone P. A novel
    prothrombin activator from the venom of Micropechis ikaheka:
    isolation and characterization. Arch. Biochem. Biophys. 2002 Dec
    1;408(1):87-92.
    29. Gutierrez J.M., Rucavado A. Snake venom metalloproteinases: their
    role in the pathogenesis of local tissue damage. Biochimie. 2000
    Sep-Oct;82(9-10):841-50. Review.
    2,3
    1. N-鍵結的醣化作用對於台灣眼鏡蛇的蛇毒金屬蛋白水解酵素之活
    性影響 國立清華大學 施秉辰碩士論文
    2. Du X.Y., Pan H., Jin Y., Zhu H., Wu X.F., Zhou Y.C. Purification,
    cDNA cloning and molecular characteristic of a fibrinolytic enzyme
    from the venom of Agkistrodon acutus. J. Nat. Toxins. 1998
    Jun;7(2):159-72.
    3. Mazzi M.V., Marcussi S., Carlos G.B., Stabeli R.G., Franco J.J., Ticli
    F.K., Cintra A.C., Franca S.C., Soares A.M., Sampaio S.V. A new
    hemorrhagic metalloprotease from Bothrops jararacussu snake venom:
    isolation and biochemical characterization. Toxicon. 2004
    Aug;44(2):215-23.
    4. Schagger H., von Jagow G. Tricine-sodium dodecyl
    sulfate-polyacrylamide gel electrophoresis for the separation of
    proteins in the range from 1 to 100 kDa. Anal. Biochem. 1987 Nov
    1;166(2):368-79.
    5. 眼鏡蛇心臟毒素與具生物重要性的胜□作用之研究 國立清華大學 林郁傑碩士論文
    6. Futaki S., Yakugaku Zasshi. Peptide synthesis aiming at elucidation
    and creation of protein functions. 1998 Nov;118(11):493-510.
    Review. Japanese.
    7. 三種眼鏡蛇之金屬蛋白酵素的純化與定性分析 國立清華大學 呂志鴻碩士論文

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE