簡易檢索 / 詳目顯示

研究生: 陳福偉
Chen, Fu-Wei
論文名稱: 三維積體電路提升良率及高效能設計
Yield Improvement and High-performance Design in 3-D Integrated Circuits
指導教授: 黃婷婷
Hwang, TingTing
口試委員: 黃俊達
Huang, Juinn-Dar
麥偉基
Mak, Wai-Kei
王廷基
Wang, Ting-Chi
李進福
Li, Jin-Fu
黃婷婷
Hwang, TingTing
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 101
中文關鍵詞: 三維晶片矽穿通道測試壓降良率時脈樹
外文關鍵詞: Three-dimensional Integrated Circuits
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著製程技術的進步,半導體元件在同樣的單位面積下可以擺置更多的電晶體,其電流消耗也隨之提升。隨著製程技術和晶片功能的提升,二維(2 Dimensional, 2D) SoC(System on Chip)設計方法(Design Methodology)面臨許多技術上和成本上的挑戰:例如,嚴重的製程變異性(process variation- random dopant fluctuation, line-edge roughness, etc. )、高昂的光罩與晶元製造生產費用和即時的上市時程(time to market)。因此,如何在三維晶片架構下,開發出降低成本之設計是相當重要之議題,本篇論文提出在晶片測試降低壓降(IR-drop)、利用三維矽智財再使用(IP re-use)來設計時脈樹以及提出有效的三維矽穿通道修復架構來提升晶片生產之良率以及降低成本。

    首先,隨著製程技術的進步和晶片複雜度的提升,延遲錯誤測試(delay-fault test)越來越受到重視。主要的原因來自在0.13um 以下更先進製程中,製造瑕疵(defect)對晶片帶來的影響大多與時序(timing)有關。為了確保電路能正常運作,同速測試(at-speed test)技術廣泛的使用在時序相關缺陷的偵測,其中在同速測試的技術中,最普遍採用為scan-test launch-off-capture 的架構。同速測試主要的方法就是引發邏輯閘(gate)的電位切換(switching),來驗證這些電位切換所經過的路徑延遲(path-delay)是否違反晶片要求。因此在測試過程中,受測電路會產生高於一般運作時的電位切換。進而引起較嚴重的壓降現象,而壓降則會增加路徑延遲進而導致測試錯誤,這種因為測試所導致的晶片不正常動作則是一種誤判(false failures),進而有可能導致測試失敗使得良率降 (yield-loss)。近年來,為了改善壓降的問題,有許多相關研究被提出。本篇論文發現X-filling 改善壓降的效果會限制於原始測試樣本(test pattern)中x-bit 的分布形,這是因為測試樣本中的x-bit 無法影響壓降嚴重區域的邏輯閘的值。因此,本篇論文將提出一個新的X-identification 的方法來尋找x-bit 其訊號傳遞的路徑可以經過壓降較嚴重的區塊,使得X-filling 可以利用而進一步改善壓降。

    接著在三維晶片部分,時脈樹合成(clock tree synthesis)在三維晶片的架構下,除了需考量時脈偏移(clock skew)和時脈延遲(clock latency)之外,為了確保能個別晶片預先功能測試驗証成功後(Known Good Die, KGD)再封裝以達到減少封裝測試成本,所以每一個別晶片仍需要個別的時脈樹做預鍵測試(pre-bond test)。三維時脈樹合成必須考慮下列問題才能完成預鍵測試:每一晶層(tier) 必須建立完整的二維時脈樹(2D clock tree)以使每一晶層可以單獨完成預鍵測試、三維晶片亦必須建立完整的三維時脈樹(3D clock tree) 以完成『後封裝測試』(post-bond test) 和正常功能操作。不同於現有己發表的三維時脈樹合成研究,皆是針對三維晶片重新做全面性的時脈樹合成,為了在三維晶片設計上達成類似二維晶片矽智財重複使用(IP re-use)之設計概念,我們將針對已設計完成的二維晶片矽智財重複使用,設計合成其他層的晶片與已設計好的二維矽智財整合。研究的主要問題包括如何連接到已設計好之二維晶片矽智財重複使用,以減少預鍵(pre-bond)及後鍵(post-bond)的時脈偏移和時脈延遲。此技術不但大量降低開發設計和光罩(mask)成本,亦同時達成個別晶片可以做時脈樹之預鍵測試。

    最後,在三維晶片中,矽穿通道是最重要的組成原件。矽穿通道提供在不同晶片堆疊層的邏輯閘(logic gate)之間的訊號傳遞。矽穿通道由於製程變異(process variation)影響:例如,溫度、精密度、物理及化學變化,會造成矽穿通發生瑕疵甚至無法正常運作使得三維晶片良率因此下降,因此,Hsieh et. al.,提出串成鍊狀結構達到提升修復機率目的,但由於矽穿通道面積相較於普通元件龐大,因此需考慮矽穿通道使用個數,因此,我們提出具有節省矽穿通道面積且達到相同修復機率之架構並且發展出適合的演算法來擺置冗餘矽穿通道。


    With the advances of VLSI design technology, yield loss, manufacturing cost, and reliability are more and more important. To tackle these issues, the yield improvement, cost reduction, and reliability mechanisms methodologies are required. In this dissertation, X-identi cation method, re-use methodology, and architecture of fault tolerance are proposed to achieve these goals.

    First, to reduce the yield loss in high-performance design, a physical-location-aware X-identi cation method is presented. To guarantee that an application speci c integrated circuit (ASIC) meets its timing requirement, at speed scan testing becomes an indispensable procedure for verifying the performance of ASIC. However, at-speed scan test su ers the test-induced yield loss. Because the switching-activity in test mode is much higher than that in normal mode, the switching-induced large current drawn causes severe IR drop and increases gate delay. X- lling is the most commonly used technique to reduce IR-drop e ffect during at-speed test. However, the eff ectiveness of X- lling depends on the number and the characteristic of X-bit distribution. In this dissertation, we propose a physical-location-aware X-identi cation which re-distributes X-bits so that the maximum switching-activity is guaranteed to be reduced after X- lling. We estimate IR-drop using RedHawk tool and the experimental results on ITC'99 show that our method has an average of 9.42% more reduction of maximum IR-drop as compared to a previous work which re-distributes X-bits evenly in all test vectors.

    Second, a clock tree algorithm with methodology of reuse in 3-D IC is proposed. IP reuse methodology has been used extensively in SoC (System on Chip) design. In this reuse methodology, while design and implementation cost is saved, manufacturing cost is not. To further reduce the cost, this reuse concept has been proposed at mask and die level in three-dimension integrated circuit (3D IC). In order to achieve manufacturing reuse, in this dissertation, we propose a new methodology to design a global clock tree in 3D IC. The objective is to extend an existing clock tree in 2D IC to 3D IC taking into consideration the wirelength, clock skew and the number of TSVs. Compared with NNG-based method, our proposed method reduces the wirelength of the new die and the skew of the global 3D clock tree, on an average, 76:92% and 5:85%, respectively.

    Finally, an architecture of TSV recovery by using test elevator TSV is proposed. In order to increase the yield of 3-D IC, fault-tolerance technique to recover failed TSV is essential. In this dissertation, an architecture of TSV recovery by using test elevator TSV is proposed. With the architecture, no spare TSV is required to be inserted in advance. Hence, no extra area incurs. TSV assignment algorithm based on min-cost maximum-flow is proposed taking into consideration the locations of functional TSV as well as test TSV, so that the total Half-Perimeter Wire Length (HPWL) of a 3-D IC design is e ectively reduced. Experimental results show that the total wirelength of 3-D IC testing is improved by 20% in average compared to that of spare TSV approach.

    1 Introduction 1 1.1 Scope and Objectives .................................................................................2 1.2 Overview of Dissertation .............................................................................4 2 A Physical-Location-Aware X-bit Redistribution for Maximum IR-Drop Reduction ...........................5 2.1 Related Work .........................................................................................6 2.2 Test Model and Motivation ............................................................................8 2.2.1 At-speed Test Model ................................................................................8 2.2.2 Motivational Example ...............................................................................10 2.3 Algorithm for X-identi fication .......................................................................11 2.3.1 The Power Grid Architecture ........................................................................11 2.3.2 Overview of Our Proposed Method ....................................................................11 2.3.3 Target Vector Selection ............................................................................13 2.3.4 Fault Removal ......................................................................................17 2.3.5 Make-up Vector Generation ..........................................................................23 2.3.6 Complexity for X-identifi cation.....................................................................25 2.4 Experimental Results .................................................................................27 3 Clock Tree Synthesis with Methodology of Re-use in 3-D IC ..............................................36 3.1 Related Work and Motivation 3.1 Related Work and Motivation 3.1 Related Work and Motivation ..........37 3.2 Problem Definition ...................................................................................40 3.2.1 Delay model ........................................................................................40 3.2.2 Architecture .......................................................................................40 3.2.3 Problem formulation ................................................................................42 3.3 Algorithm ............................................................................................43 3.3.1 Overview of Our Proposed Method ....................................................................44 3.3.2 Pre-fabricated TSV-bu er Information ................................................................44 3.3.3 Initial Clock Tree Topology Construction ...........................................................46 3.3.4 Adjust Global Tree Topology ........................................................................51 3.3.5 Clock Tree Construction ............................................................................52 3.4 Extension to Multiple ASIC Layers ....................................................................55 3.5 Experiment ...........................................................................................57 3.5.1 Comparison of NNG-based, 3D-MMM-based and our methods ..............................................57 3.5.2 Analysis of Overhead ...............................................................................62 3.5.3 Multiple ASIC layers ...............................................................................67 4 Time-Multiplexed Dual Role TSV for Fault Tolerance at Module Level .....................................72 4.1 Related Work .........................................................................................73 4.2 Preliminary ..........................................................................................74 4.2.1 Review on Architecture for TSV Recovery ............................................................74 4.2.2 3-D IC Design with TSV-blocks ......................................................................75 4.3 Test Architecture and Problem Definition .............................................................75 4.3.1 Test Architecture in 3-D IC ........................................................................75 4.3.2 TSV Redundancy Using Test Elevator TSV and MUX Configuration .......................................78 4.3.3 Problem Formulation ................................................................................80 4.4 Algorithm ............................................................................................80 4.4.1 Definition of Cost Function ........................................................................80 4.4.2 Network-flow Optimization for TSV Assignment .......................................................85 4.5 Experimental Results .................................................................................87 5 Conclusions ............................................................................................95

    [1] B. Swanson and M. Lange, "At-Speed Testing Made Easy," EE times, 3, June 2004.
    [2] J. Gatej, Lee Song, C. Pyron, R. Raina, "Evaluating ATE Features in Terms of Test Escape Rates and Other Cost of Test Culprits," in Proceedings of the International Test Conference(ITC), pp. 1040-1049, 2002
    [3] L. T. Wang, C. W. Wu and X. Wen, "VLSI Test Principles and Architectures: Design for Testability," San Francisco: Elsevier, 2006.
    [4] N. Ahmed, M. Tehranipoor, V. Jayaram, "A Novel Framework for Faster-than-At-Speed Delay Test Considering IR-drop E ects", in Proceedings of the IEEE/ACM International Conference on Computer Aided Design(ICCAD), pp. 198-203, 2006.
    [5] J. Xiong, V. Zolotov, C. Visweswarish and P.A. Habitz, "Optimal Margin Computation for At-Speed Test", in Proceedings of the Design, Automation and Test in Europe Conference(DATE), pp. 622-627, Mar. 2008.
    [6] J. Saxena, K. M. Butler, V. B. Jayaram, et al., "A Case Study of IR-drop in Structured At-Speed
    Testing", in Proceedings of the International Test Conference(ITC), pp. 1089-1104, Sep-Oct. 2003.
    [7] S. Ravi,\Power-aware Test: Challenges and Solutions", in Proceedings of the International Test Con-conference(ITC), pp. 1-10, Oct. 2007.
    [8] Wen-Wen Hsieh, Shih-Liang Chen, I-Sheng Lin, TingTing Hwang, "A Physical-Location-Aware X-fi lling Method for IR-Drop Reduction in At-Speed Test," IEEE Trans. on CAD of Integrated Circuits and Systems(TCAD), Vol.29, No.1, pp. 289-298, 2009.
    [9] X. Wen, Kohei Miyase, Tatsuya Suzuki, Seiji Kajihara, Yuji Ohsumi and Kewal K. Saluja, "Critical-Path-Aware X-Filling for E ective IR-Drop Reduction in At-Speed Scan Testing," in Proceeding of ACM/IEEE Design Automation Conference(DAC), pp. 527-532, 2007.
    [10] Enokimoto, K., Wen, X., Yamato, Y., Miyase, K., Sone, H., Kajihara, S., Aso, M. and Furukawa, H., "CAT: A Critical-Area-Targeted Test Set Modi cation Scheme for Reducing Launch Switching Activity in At-Speed Scan Testing," Asian Test Symposium, 2009. ATS '09, pp.99-104, 23-26 Nov. 2009
    [11] Kohei Miyase , Kenji Noda, Hideaki Ito, Kazumi Hatayama, Takashi Aikyo, Yuta Yamato, Hiroshi Furukawa, Xiaoqing Wen and Seiji Kajihara. \E ective IR-drop reduction in at-speed scan testing using Distribution-Controlling X-Identi cation," International Conference on Computer Aided Design(ICCAD) , pp. 52-58 ,2008
    [12] X. Wen, K. Miyase, S. Kajihara, T. Suzuki, Y. Yamato, P. Girard, Y. Ohsumi and L. T. Wang, "A Novel Scheme to Reduce Power Supply Noise for High-Quality At-Speed Scan Testing", in Proceedings of the International Test Conference(ITC), pp. 1-10, Oct. 2007.
    [13] Jia Li, Qiang Xu, Yu Hu, Xiaowei Li, "iFill: An Impact-Oriented X-Filling Method for Shift- and Capture-Power Reduction in At-Speed Scan-Based Testing", The Design, Automation and Test in Europe Conference(DATE), 2008.
    [14] "TetraMAX ATPG", Synopsys.
    [15] N. Ahmed, M. Tehranipoor, V. Jayaram, "A novel framework for faster-than-at-speed delay test considering IR-drop e ects," in Proceedings of the IEEE/ACM international Conference on Computer Aided Design(ICCAD), pp.198-203. November 2006.
    [16] ITC99 Benchmark Circuits Suite [Online]. Available: http://www.cerc.utexas.edu/itc99-benchmarks/bench.html
    [17] "Design Compiler", Synopsys.
    [18] "SoC Encounter", Cadence.
    [19] "RedHawk", Apache Design Solution, Inc.
    [20] "PrimeTime", Synopsys.
    [21] C. S. Tan, Ronald J. Gutmann, and L. Rafael Reif, "Wafer Level 3-D ICs Process Technology," Springer, 2008
    [22] S. M. Alam, R. E. Jones, S. Pozder and A. Jain, "Die wafer stacking with reciprocal design symmetry(RDS) for mask reuse in three-dimensional (3D) integration technology," Quality of Electronic Design, 2009 (ISQED 2009), pp.569-575, 2009
    [23] C.-M. Hung and Y.-L. Lin, "Three-dimensional Integrated Circuits Implementation of Multiple Applications Emphasising Manufacture Reuse", to be publised in IET Computers and Digital Techniques,vol.5 ,Iss.3 , pp.179-185
    [24] Y.-L. Lin, "Chipsburger: From IP Design Reuse for SOCs to Manufacture Reuse for 3D ICs, "D43D: System Design for 3D Silicon Integration Workshop," June 17-18, 2009, LETI, Grenoble, France
    [25] D. K. Huang, "A TSV-Number-Constrained Bus System Synthesizer for Platform-based 3D IC Design", Thesis, NTHU, 2010
    [26] J. Minz, Xin Zhao and Sung Kyu Lim, "Bu ered Clock Tree Synthesis for 3D ICs Under Thermal Variations," in Proceedings of Asia and South Paci c Design Automation Conference, pp.504-509, 2008
    [27] Tak-Yung Kim and Taewhan Kim, "Clock tree embedding for 3D ICs," in Proceedings of Asia and South Paci c Design Automation Conference, , pp.486-491, 2010
    [28] Tak-Yung Kim and Taewhan Kim, "Clock tree synthesis with pre-bond testability for 3D stacked IC Designs," in Proceedings of Design Automation Conference (DAC), pp.723-728, 2010
    [29] J. Cong, A. B. Kahng, C. K. Koh and C. W. Albert Tsao, "Bounded-Skew Clock and Steiner Routing," ACM Transactions on Design Automation of Electronic Systems (TODAES)", vol.3 Issue 3, July 1998
    [30] Masato Edahiro, "A clustering-based optimization algorithm in zero-skew routin", Proceedings of the Design Automation Conference, pp. 612-616, 1993.
    [31] RMST-Pack, http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/RSMT/
    [32] Ashok Vittal and Malgorzata Marek-Sadowska, "Power Optimal Bu ered Clock Tree Design," Proceedings of the Design Automation Conference (DAC)", pp. 497-502, 1995.
    [33] ISPD 2009 Clock Network Synthesis Contest benchmark.
    http://ispd.cc/contests/09/ispd09cts.html
    [34] GSRC IBM Benchmark, http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/BST/
    [35] Predictive Technology Model. http://ptm.asu.edu/
    [36] NGSPICE http://ngspice.sourceforge.net/
    [37] Xin Zhao, Jacob Minz and Sung Kyu Lim, "Low-Power and Reliable Clock Network Design for Through Silicon Via based 3D IC," IEEE Transaction on Components, Packaging, and Manufacturing Technology, vol.1, No.2, pp. 247-259, 2011
    [38] Xin Zhao, Dean L. Lewis, Hsien-Hsin S. Lee and Sung Kyu Lim, "Low-Power Clock Tree Design for Pre-Bond Testing of 3D Stacked ICs," IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, vol.30, No.5, pp. 732-745, 2011
    [39] C. S. Tan, Ronald J. Gutmann, and L. Rafael Reif, "Wafer Level 3-D ICs Process Technology," Springer, 2008
    [40] P. R. Morrow , M. J. Kobrinsky , S. Ramanathan , C.-M. Park , M. Harmes , V. Ramachandrarao, H.-M. Park , G. Kloster , S. List and S. Kim, "Wafer-level 3D Interconnects via Cu Bonding," Proc.
    AMC, pp. 125-130, 2004
    [41] P. Garrou, C. Bower, and P. Ramm, "Handbook of 3D Integration: Technology and Application of 3D Integrated Circuits," Weinheim: XWILEY-VCH Verlag GmbH & Co. KGaA, vol. 1-2, 2008
    [42] Dean L. Lewis and Hsien-Hsin S. Lee, "A Scan-Island Based Design Enabling Prebond Testability in Die Stacked Microprocessors," in Proceedings of IEEE International Test Conference (ITC), pp.1-8 Oct. 2007
    [43] Chun-Chuan Chi, Marinissen, E.J., Goel, S.K., Cheng-Wen Wu, "Post-bond testing of 2.5D-SICs and 3D-SICs containing a passive silicon interposer base," in Proceedings of IEEE International Test
    Conference (ITC), pp.1-10, 20-22 Sept. 2011
    [44] Igor Loi, Federico Angiolini, Shinobu Fujita, Subhasish Mitra, and Luca Benini, "Characterization and Implementation of Fault-Tolerant Vertical Links for 3-D Networks-on-Chip," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 30, No.1, Jan. 2011
    [45] Cheng-Wen Wu, Shyue-Kun Lu and Jin-Fu Li, "On Test and Repair of 3D Random Access Memory," in Proceedings of Asia and South Paci c Design Automation Conference (ASP-DAC), pp.744-749, 2012
    [46] Chiao-Ling Lung, Yu-Shih Su, Shih-Hsiu Huang, Yiyu Shi and Shih-Chieh Chang, "Fault-tolerant 3D clock network," in Proceedings of Design Automation Conference (DAC), pp.645-651, 2011
    [47] Fangming Ye and Krishnendu Chakrabarty, "TSV Open Defects in 3D Integrated Circuits: Characterization, Test, and Optimal Spare Allocation," in Proceedings of Design Automation Conference, pp.1024-1030, 2012
    [48] Ang-Chih Hsieh, TingTing Hwang, "TSV Redundancy: Architecture and Design Issues in 3-D IC," IEEE Transactions on Very Large Scale Integration Systems, vol.20, no.4, pp.711-722, April 2012
    [49] Fu-Wei Chen, Hui-Ling Ting,and TingTing Hwang, "Fault-tolerant TSV by Using Scan-chain TSV," to appear in Asia and South Paci c Design Automation Conference (ASP-DAC), Jan. 2014
    [50] D. L. Lewis and H. S. Lee, "A Scanisland Based Design Enabling Pre-bond Testability in Die-stacked Microprocessors," in Proceedings of IEEE International Test Conference (ITC), pp. 1-8, 2007
    [51] Po-Yuan Chen, Cheng-Wen Wu and Ding-Ming Kwai, "On-chip Testing of Blind and Open-sleeve TSVs for 3D IC before Bonding," in Proceedings of VLSI Test Symposium (VTS), pp.263-268, 2010
    [52] Minki Cho, Chang Liu, Dae Hyun Kim, Sung Kyu Lim and Mukhopadhyay, S., "Pre-Bond and Post-Bond Test and Signal Recovery Structure to Characterize and Repair TSV Defect Induced Signal
    Degradation in 3-D System," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol.1, no.11, pp.1718-1712, Nov 2011
    [53] Marinissen, E. J., Chun-Chuan Chi, Jouke Verbree, and Mario Konijnenburg, "3D DfT Architecture for Pre-bond and Post-bond Testing," in Proceedings of IEEE International 3D Systems Integration
    Conference (3DIC), pp.1-8, Nov. 2010
    [54] Chun-Chuan Chi, Marinissen, E.J., Goel, S.K., Cheng-Wen Wu, "DfT Architecture for 3D-SICs with Multiple Towers," in Proceedings of European Test Symposium (ETS), pp.51-56, May 2011
    [55] Johann Knechtel, Igor L. Markov, and Jens Lienig, "Assembling 2D Blocks into 3D Chips", In Proceedings of ACM international Symposium on Physical Design (ISPD), ,pp 81-88, 2011

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE