研究生: |
林溥如 Pu-Ru Lin |
---|---|
論文名稱: |
熱微機電元件研究 Thermal MEMS Devices Study |
指導教授: |
葉鳳生
Fon-Shan Huang 黃瑞星 Ruey-Shing Huang 吳清沂 Ching-Yi Wu |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 142 |
中文關鍵詞: | 熱傳分析 、熱光元件 、熱電元件 、微機電系統 |
外文關鍵詞: | Thermal analysis, Thermo-optic Mach-Zehnder, Thermo-electrical device, MEMS |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著電子元件尺寸的縮小,元件內部熱管理的需求也越來越殷切。本論文主要的研究是微機電熱元件,干涉式熱-光耦合元件在矽基板上的熱傳導模型,主要應用於光通訊上的訊號開關與調變;以及熱-電耦合元件製作在軟性基板上,應用於非平坦的表面量測溫度。
干涉式熱-光元件製作在矽基板上的主要的問題是需要很大的操作功率,方能達到訊號切換的目的。本論文利用背蝕刻矽基板的效應,設計 (剩餘矽晶片的厚度)以及 (蝕刻凹槽的寬度),將可使矽基板造成的問題消除,並且利用干涉的波導相對於蝕刻凹槽非對稱的設計概念,在元件的操作功率與反應時間的取捨中,得到最佳化的設計。
現今溫度的感測器,大部份為平面式的,這是因為感測的材料製作於硬質的基板上(如矽基板),若要實現非平面式的感測,則需製作於軟性基板上;軟性基板另一個優點是具有低熱傳導係數,熱電感測元件製作25μm厚的PI基板上,即可得到足夠的溫差(0.8 oC),輸出的熱電壓足以做為溫度感測用。
本論文研究64個串聯Cu-Ni熱電偶的製作與特性,藉由改變蝕刻液的比例(9M KOH 和1M C2H7NO),對聚亞醯胺基板做垂直孔洞的結構,使元件的感測方向是橫向立體的,完成的熱電堆尺寸為溫度感測器的零敏度為0.44mV/K。
The thermal management becomes more significant because of the continuing shrinkage of electronics devices. The thermal MEMs devices are the major topics in the thesis. The thermo-optic and thermo-electro devices are involved. The Mach-Zhender type thermo-optic devices are used for the application of switch and modulator in optical communication. The thermo-electro devices on the flexible substrate can be used for measuring temperature of non-planar objects.
The main issue of a Mach-Zherder interferometer based thermo -optic switch is that it needs large heating power to get adequate phase shift for switching. This is due to the nature of silicon substrate which possesses very high thermal conductivity. A device structure of etching in a silicon groove underneath the heated arm of waveguide was to suppress the heat loss through the bulk silicon substrate. This study shows that the optimum design of the device is obtained when the silicon etched groove is located asymmetrically with respect to the two waveguide brances.
Most of temperature sensors are made in planar type because of the substrate. To realize non-planar temperature measurement the devices are needed to fabricate on flexible substrate. The thesis presents the fabrication and characterization of a three-dimensional (3D) thermopile;
consists of 64 Cu-Ni series connected thermocouples on polyimide (PI) flexible substrate. Using wet etching to etch through 25 μm PI, the cold and hot junctions of thermocouples are formed on the top and bottom surface of PI substrate. This 3D layout design differentiates its
innovative uniqueness from the traditional 2D planar thermopiles that have both hot and cold junctions on the same plane. The experimental studies on the PI etching with respect to the concentrations of KOH and C2H7NO in the etching solution conclude that the optimal composition of the etchant is 9M KOH with 1M C2H7NO and etched at 80 oC.
A measured sensitivity of 0.44mV/K is realized in the fabricated device. The temperatures measured by the 3D thermopile are close to those obtained with a digital thermometer, demonstrating that 3D flexible thermopiles has great potential to provide low cost thermal sensor.
[1] 經濟部, 微機電系統專題研究
[2] http://ww.issp.sinica.edu.tw/chinese/researcher/economic/ypchu/elec3
.7.pdf.
[3] http://www.materialsnet.com.tw/DocView.aspx?id=6872
[4] http://www.hope.com.tw/Art/Show2.asp?O=200704031230441982
[5] H. Nishihara, M. Haruna and T. Suhara, Optical Integrated Circuits,
1987, ISBN 0-07-046092-2.
[6] 張以忱, 溫度傳感功能薄膜技術, 真空科學與技術, vol.23, 2003.
[7] Stuart Ball, 常用溫度測量技術及其介面電路,電子工程專輯, 2003
[8] http://www.tisc.com.tw/new/newreport/industry/upload/industry2008
0321-1.pdf.
[9] H. Robbins and B. Schwartz, J. Electrochem. Soc., vol. 106, p. 505,
1959.
[10] B. Schwartz and H. Robbins, J. Electrochem. Soc., vol. 123, p. 1903,
1976.
[11] 國科會精密儀器中心, Micro Electro Mechanical Systems
Technology & Application, 2004.
[12] http://en.wikipedia.org/wiki/LIGA
[13] http://www.imm.uni-mainz.de/
[14] http://en.wikipedia.org/wiki/Deep_reactive_ion_etching
[15] F. U. Laermer, TRANSDUCERS '05, 2005. vol. 2, pp. 1118-1121,
June 2005.
[16] Puru Lin, Design and Fabrication of PECVD SiOxNy Array
Waveguide Grating, Thesis, July 2003.
[17] L. B. Solando and E. C. M. Penning, J. Lightwave Technology,
vol. 13, no. 4, April 1995.
[18] Q. Lai, W. Hunziker, and H. Melchiro, IEEE Photon. Technol. Lett.,
vol. 10, pp.681-683, May 1998.
[19] S. Y. Huang, On the Design Simulation and Fabrication of a
2×2 Mach-Zehnder optical switch in Silica-in-Silicon. Thesis,
February 2003.
[20] R. Kasahara,M. Yanagisawa, J. Lightwave Technology, vol. 20, no. 6,
June 2002.
[21] S.Sohma, T. Goh, H. Okazaki, M. Okuno and A. Sugita, IEEE
Electron. Lett., vol.38, no.3, January 2002.
[22] http://www.upscale.utoronto.ca/GeneralInterest/Harrison/MachZehnd
er/MachZehnder.html.
[23] http://en.wikipedia.org/wiki/Mach-Zehnder_interferometer.
[24] F. P. Incropera and D. P. Dewitt, Fundamentals of Heat and Mass
Transfer, JOHN Wiley & SONs, 1996.
[25] 吳瀧川陳慶鐘, 熱傳遞,高立圖書有限公司, 1988.
[26] R. W. Lewis, P. Nithiarasu, K. N. Seetharamu, Fundamentals of the
Finite Element Method for Heat and Heat Fluid Flow, JOHN Wiley
& SONs, 2004.
[27] S. Moaveni, Finite Element Analysis Theory and Application with
ANSYS, Prentice Hall, 2003.
[28] R. W. Clough, Proceedings of American Society of Civil Engineers,
2nd Conference on Electronic Computations, vol. 23, 1960,
[29] O.C. Zienkiewicz and K. Cheung, Engineer, vol. 200, 1965.
[30] K. J. Bathe, Finite Element Procedures in Engineering Analysis,
Prentice Hall, Englewood Cliffs, 1982.
[31] R.W. Lewis, K.Morgan, H. R. Thomas and K. N. Seetharamu, Finite
Element Methods in Heat Transfer Analysis, JOHN Wiley & SONs,
1996.
[32] J. N. Reddy, An Introduction to Finite Element Method, McGraw-Hill, 1993.
[33] S. V. Patankar, Numerical Heat Transfer and Fluid Flow,
Hemisphere Publishers, 1980.
[34] H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits,
McGraw-Hill, 1989.
[35] F. Jiang, G. B. Lee, Y. C. Tai, and C. M. Ho, Sens. Actuators A,
vol.79, pp.194-203, 2000.
[36] V. J. Lumelsky, M. S. Shur, and S. Wagner, IEEE Sensors, vol. 1,
no. 1, 2001.
[37] http://www.thermo-ly.com.tw/web/information.htm.
[38] E. Castano, E. Revuelto, M.C. Martin, A. Garcia-Alonso, F.J. Gracia,
Sens. Actuators A, vol. 66, pp. 65-67, 1997.
[39] Q. Chen, J. P. Longtin, S. Tankiewicz, S. Sampath and R. J.
Gambino,J. Micromechanics and Microengineering, vol.14, pp. 506-513, 2004.
[40] W. Qu, M. Plotner and W. J. Fischer, J. Micromechanics and
Microengineering, vol.11, pp. 146-152, 2001.
[41] K.Itoigawa, H. Ueno, M. Shiozaki, T. Toriyama and S.Sugiyama, J.
Micromechanics and Microengineering, vol. 15, pp.233-238, 2005.
[42] S. Hasebe, J. Ogawa, T. Toriyama, S. Sugiyama, H. Ueno and K.
Itaigawa, International symposium on micromechatronics and
human science, 2003.
[43] S. Kasap, Principles of Electronic Materials and Devices,
McGraw-Hill, 2006.
[44] W., Stephance, Dynamic electrothermal model of a
sputtered thermopile thermal radiation detector for earth radiation
budget applications, Thesis, Augest 1997.
[45] 田宏隆, 工業材料, 165(6), 2004.
[46] http://www2.dupont.com/DuPont_Home/en_US/
[47] http://www.ube-ind.co.jp
[48] S. C. Allison, R. L. Smith, D. W. Howard, C. Gonzalez, and S. D.
Collins, Sens. Actuators A, vol. 104, 2003.
[49] S. Duby, B. J. Ramsey, and D. J. Harrison, Electron. Lett. vol. 41,
2005
[50] J. S. Han, Z. Y. Tan, K. Sato and M. Shikida, J. Micromechanics and
Microengineering, vol. 4, pp. 38-48, 2004.