研究生: |
楊鴻傑 Yang, Hong-Jie |
---|---|
論文名稱: |
直接液體注入法經由氣-液-固機制成長矽、鍺奈米線的研究 Preparation of silicon and germanium nanowire with direct liquid injection chemical vapor deposition via vapor-liquid-solid mechanism |
指導教授: |
段興宇
Tuan, Hsing-Yu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 78 |
中文關鍵詞: | 奈米線 、氣-液-固機制 、直接液體注入法 、化學氣相沉澱 、矽 、鍺 |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
半導體奈米線的成長方法已被廣泛的研究與發表,其中以化學氣相沉澱為最為廣泛使用的方法,但礙於矽烷(silane)與鍺烷(germane)的危險性,使的合成米線時需要提高設備的要求,以達到安全的目的。因此我們想提供一種新穎的合成方法,並且使用穩定的前驅物來合成矽、鍺奈米線。我們採用直接液體注入化學氣相沉積方法 ( direct liquid injection chemical vapor deposition)於常壓成長矽、鍺奈米線,直接將液態的前驅物monophenylsilane(MPS)或diphenylgermane(DPG)與催化劑金奈米粒子以溶劑甲苯稀釋再通入反應器,經由氣-液-固(vapor-liquid-solid , VLS)機制成功的成長出矽、鍺奈米線。經實驗證明,鍺奈米線的品質以DPG濃度0.3 M、反應溫度420 ℃和流速0.03 ml/min,所製備出的鍺奈米線品質最佳,產量為21.3 mg,產率為19.56 %。反應溫度與流速會影響鍺奈米線品質,產量及產率。矽奈米線的品質以MPS濃度0.63 M、反應溫度480 ℃和流速0.05 ml/min,所製備出的矽奈米線品質最佳,產量為3 mg。矽、鍺奈米線經由分析後,鍺奈米線長度可達50 µm以上,矽、鍺奈米線皆為結晶且為單晶的金剛石(diamond cubic)結構。
[1] H. Y. Tuan, D. C. Lee, T. Hanrath, B. A. Korgel, Chem. Mater.,
2005, 17, 5705-5711.
[2] Y.-W. Jun, J.-S. Choi, J. Cheon, Angew. Chem. Int. Ed., 2006, 45,
3414 – 3439.
[3] S. Iijjima, Nature, 1991, 354, 56.
[4] Y. Cui, Q. Wei, H. Park, C. M. Lieber, Science, 2001, 293, 1289.
[5] L. J. Lauhon, M. S. Gudiksen, D. Wang, C. M. Lieber, Nature, 2002,
420, 57.
[6] D. Wang, Pure Appl. Chem., 2007, 79, 55–65.
[7] Y.-K. Choi, J. Zhu, J. Grunes, J. Bokor, G. A. Somorjai, J. Phys. Chem. B 2003, 107, 3340.
[8] R. S. Wanger, W. C. Ellis, Appl. Phys. Lett., 1964, 4 , 89.
[9] Y. Wu, P. Yang, J. Am. Chem. Soc. 2001, 123, 3165-3166.
[10] Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. F. Wang, C. M. Lieber, Appl. Phys. Lett., 2001, 78, 2214.
[11] R. L. Penn, J. F. Banfield, Geochim. Cosmochim. Acta, 1999, 63,
[12] J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, J. Vac. Sci. Technol. B , 1997, 15(3), 554.
[13] D. Wang, R. Tu, L. Zhang, H. Dai, Angew. Chem. Int. Ed., 2005, 44, 2925 –2929.
[14] A. M. Morales, C. M. Lieber, Science, 1998, 279, 208.
[15] Y. Wu, P. Yang, Chem. Mater., 2000, 12, 605-607
[16] G. Gu, M. Burghard, G. T. Kim, G. S. Du ¨sberg, P. W. Chiu, V. Krstic, S. Roth, J. Appl. Phys., 2001, 90, 5747.
[17] N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, S. T. Lee, Phys. Rev. B, 1998, 58,
[18] R.-Q. Zhang, Y. Lifshitz, S.-T. Lee, Adv. Mater., 2003, 15, 635.
[19] K.-K. Lew, J. M. Redwing, J. Cryst. Growth, 2003, 254, 14–22
[20] J. R. Heath, F. K. LeGoues, Chem. Phys. Lett., 1993, 208, 263.
[21] B. Wen, Y. Huang, J. J. Boland, J. Mater. Chem., 2008, 18, 2011–2015.
[22] T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, W. E. Buhro, Science, 1995 , 270, 1791.
[23] H. Yu, J. Li, R. A. Loomis, P. C. Gibbons, L.-W. Wang, W. E. Buhro, J. Am. Chem. Soc., 2003, 125, 16168-16169
[24] K.-T. Yong, Y. Sahoo, K. R. Choudhury, M. T. Swihart, Chem. Mater., 2006, 18, 5965-5972.
[25] X. Lu, D. D. Fanfair, K. P. Johnston, B. A. Korgel, J. Am. Chem. Soc., 2005, 127, 15718-5719.
[26] A. T. Heitsch, D. D. Fanfair, H.-Y. Tuan, B. A. Korgel, J. Am. Chem. Soc., 2008, 130, 5436-5437.
[27] J. D. Holmes, K. P. Johnston, R. C. Doty, B. A. Korgel, Science, 2000, 287, 1471.
[28]T. Hanrath, B. A. Korgel, Adv. Mater., 2003, 15, 437.
[29] T. Hanrath, B. A. Korgel, J. Am. Chem. Soc., 2002, 124, 1424.
[30] F. M. Davidson, III, R. Wiacek, B. A. Korgel, Chem. Mater., 2005,
17, 230–233.
[31] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. Yang, Nature
materials, 2005, 4, 455.
[32] R. Andrews, D. Jacques, A.M. Rao, F. Derbyshire, D. Qian , X. Fan, E.C. Dickey , J. Chen. Chemical Physics Letters, 1999, 303, 467–474
[33] Q. Liu, W. Ren, Z.-G. Chen, D.-W. Wang, B. Liu, B. Yu, F. Li, H. Cong, H.-M. Cheng, ACS NANO, 2008, 8, 1722.
[34] T. R. Hogness, T. L. Wilson, and W. C. Johnson, J. Am. Chem. Soc., 1936, 58, 108.
[35] D.-J. Peng , Y.-Y. Chang , H.-C. Wu ,C.-C. Tsaur, J.-R. Chen Engineering Failure Analysis, 2008, 15, 275–280.
[36] A. I. Hochbaum, R. Fan, R. He, P. Yang, Nano Lett. 2005, 5, 457.
[37] S. P. Walch, C. E. Dateo, J. Phys. Chem. A 2001, 105, 2015.
[38] E. C. Garnett, W. Liang, P. Yang, Adv. Mater. 2007, 19, 2946.
[39] V. A. Nebol’sin, A. A. Shchetinin, A. A. Dolgachev, V. V. Korneeva, Inorg. Mater. 2005, 41, 1256.
[40] B. M. Kayes, M. A. Filler, M. C. Putnam, M. D. Kelzenberg,
N. S. Lewis, H. A. Atwater, Appl. Phys. Lett. 2007, 91, 103110.
[41] J.-R. Chen, H.-Y. Tsai, S.-K. Chen, H.-R. Pan, S.-C. Hu, C.-C. Shen, C.-M. Kuan, Y.-C. Lee, C.-C. Wu, Process Safety Progress, 2006, 25, 237.
[42] V. Schmidt, J. V. Wittemann, U. Go ¨sele, Chem. Rev. 2010, 110, 361–388.
[43] H. J. Boer, Solid State Technology, 1996, 149.
[44] M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, J.
Chem. Soc. Chem. Commun., 1994, 801.
[45] M.-C. Daniel, D. Astruc, Chem. Rev., 2004, 104, 293−346.
[46] O. H. Johnson, D. M. Harris, J. Am. Chem. Soc., 1950, 72, 5564.
[47] W. H.Nebergall, J. Am. Chem. Soc. 1950, 72 , 4702–4704.
[48] M. Wautelet, J. P. Dauchot, M. Hecq, Nanotechnology, 2000, 11, 6-9.
[49] H. D. Parka, A.-C. Gaillot, S.M. Prokes, R. C. Cammarata, J. Cryst.
Growth, 2006, 296, 159–164.
[50] F. Glockling, K. A. Hooton, J. Chem. Soc., 1963, 1849 – 1854.
[51] T. Hanrath, B. A. Korgel, J. Am. Chem. Soc., 2002, 124, 1424.
[52] H. Gilman, D. H. Miles, J. Org. Chem., 1958, 23, 326–328.
[53] H. Z. Zhang,; D. P. Yu,; Y. Ding,; Z. G. Bai,; Q. L. Hang,; S. Q. Feng, Appl. Phys. Lett. 1998, 73, 3396-3398.
[54] J. Johansson,; C. P. T. Svensson,; T. Martensson,; L. Samuelson,; W. Seifert J. Phys. Chem. B 2005, 109, 13567-13571.
[55] J. L. , Jr. Speier,; R. E. Zimmerman, J. Am. Chem. Soc. 1955, 77, 6395–6396.
[56] G. A. Russell, J. Am. Chem. Soc. 1959, 81, 4815–4825.
[57] R. W. Coutant,; A. Levy, Aerospace Research Laboratories 1969, 69, 0213.
[58] H.-Y. Tuan, D. C. Lee and B. A. Korgel, Angew. Chem. Intl. Ed.,2006, 31, 5184–5187.
[59] T. Meng, Thin Solid Films, 1993, 223, 201-211.
[60] K.-K. Lew,; J. M. Redwing, Journal of Crystal Growth 2003, 254, 14–22.
[61] R.W. Coutant, A. Levy, U.S. Clearinghouse Fed. Sci. Tech.Inform. , 1969.
[62] S.-L. Zhang, W. Ding, Y. Yan, J. Qu, B. Li, L.-Y. Li, K. T. Yue, D. Yu, Appl. Phys. Lett., 2002, 81, 4446.
[63] S. Piscanec, M. Cantoro, A. C. Ferrari, J. A. Zapien, Y. Lifshitz, S. T. Lee,S. Hofmann, J. Robertson, Physical Review B 2003, 68, 241312.