研究生: |
林學楚 Hsueh Chu Lin |
---|---|
論文名稱: |
多壁奈米碳管/聚二甲基矽氧烷複合材料機械性質與黏彈性質研究 Mechanical and Viscoelastic Properties of MWNT/PDMS Nanocomposites |
指導教授: |
葉銘泉
Ming Chuen Yip |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 135 |
中文關鍵詞: | 聚二甲基矽氧烷 、多壁奈米碳管 、薄膜 、潛變 |
外文關鍵詞: | PDMS, MWNT, film, creep |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
聚二甲基矽氧烷為矽基彈性體高分子,於室溫中屬橡膠態,故機械強度薄弱且具極大延展性,其優點為無毒、生物相容性與優異成型特性…等,近年常被運用於奈米壓印技術領域。薄弱之機械性質常使聚二甲基矽氧烷於轉印過程中產生破壞,為此本論文將具有優異機械性質之奈米碳管添加入聚二甲基矽氧烷中,討論奈米碳管對其機械性質影響性。
本論文係研究多壁奈米碳管對聚二甲基矽氧烷於拉伸機械性質與黏彈性質影響,含括拉伸測試、潛變測試與連續動態機械分析…等;其中由拉伸測試得知,初始模數隨多壁碳管含量增加而提昇,但破壞應變與破壞應力卻隨多壁碳管含量增加而減少;由連續動態機械分析得知,因碳管添加使儲存模數提昇55%;另由拉伸潛變測試得知,由於碳管添加,使其於聚二甲基矽氧烷內形成稠密的網路,此網路不但可減緩潛變過程之應變率更可減少聚二甲基矽氧烷體積電阻。
Polydimethylsiloxane (PDMS) is a silicon-based elastomer. In recent years, PDMS has also been used as a casting mold for micro- or nano-contact printing. The mechanical properties of PDMS are so soft and flexible that molds of PDMS affected by gravity produce defects while transforming patterns. To strengthen the mold, it is important to improve the mechanical properties of this material. Many polymers have been added with nanoparticles to improve their properties. Based on the reasons mentioned above, multi-wall carbon nanotubes (MWNT) were mixed with PDMS in this research.
The aim of this thesis focus on investigating the influence of MWNT on the tensile mechanical and viscoelastic properties of MWNT/PDMS membranes, which included initial modulus, stress at break, strain at break, storage modulus and creep rate…etc. Tensile test show that the initial modulus of MWNT/PDMS increases with MWNT content, but both the stress and strain at break decrease. The results of continuous dynamic mechanical analysis indicate that the storage modulus of the resulting specimens was dramatically enhanced, and the storage modulus was significantly improve 55%, when MWNT content is 1wt%. The result from tensile creep test shows the creep of MWNT/PDMS was decreased by comparing to that of pure PDMS on evaluated temperature conditions at different stress levels. Due to MWNT formed a dense MWNT-network contributed greatly to slow down the creep rate.
参考文獻
1. D. Armani and C. Liu, “Re-configurable Fluid Circuits By PDMS Elastomer Micromachining,” 12th International Conference on MEMS, MEMS 99, pp.222-227, Orland, FL, 1998.
2. Sylgard 184 Silicone elastomer product informatiom.
3. G.X. Chen, H.S. Kim, B.H. Park and J.S. Yoon, “Highly insulating silicone composite with a high carbon nanotube,” Carbon, pp.3348-3378, 2006.
4. J.J. Nagel, G. Mikhail, H. Noh and J. Koo, “Magnetically Actuated Micropumps Using an Fe-PDMS Composite Membrane,” www.library.drexel.edu.
5. L. Bokobza, “Multiwall carbon nanotube elastomeric composites: A review,” polymer, article in press, 2007.
6. A. Galliano, S. Bistac and J. Schultz, “Adhesion and friction of PDMS networks:molecular weight effects,” Journal of Colloid and Interface Science, Vol 265, pp.372-379, 2003.
7. S. Iijima, “Helical microtubules of graphitic carbon,” Nature, Vol. 354, pp.56-58, 1991.
8. J.P. Salvetat, GAD Briggs, J.M. Bonard, R.R. Bacsa, A. Kulik and T. Stockli, “Elastic and Shear Moduli of Single-Walled Carbon Nanotube
Ropes,” Physical Review Letters, Vol 82, pp.944-947, 1999.
9. P. Poncharal, Z.L. Wang, D. Ugarte and D. Heer, “Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes ,” Science, Vol 283, pp.1513-1516, 1999.
10. A. Allaoui, S. Bai , H.M. Cheng and J.B. Bai, “Mechanical and electrical properties of a MWNT/epoxy composite,” Composites Science and Technology, Vol 62, pp.1993-1998, 2002.
11. M.K. Yeh, N.H. Tai and J.H. Liu, “Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes,” Carbon, Vol 44, pp.1-9, 2006.
12. D. Qian, E.C. Dickey, R. Andrew and T. Rantell, “Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites,” Applied Physics Letters, Vol 76, pp.2868-2870, 2000.
13. M.A. Lopez-Manchado, J. Biagiotti, L. Valentini and J.M. Kenny, ” Dynamic mechanical and Raman spectroscopy studies on interaction between single-walled carbon nanotubes and natural rubber,” Journal of Applied Polymer Science, Vol 92, pp.3394-3400, 2004.
14. A. Fakhru’l-Razi, M.A. Atieh, N. Girun, T.G. Chuah, M. El-Sadig and D.R.A Biak, “Effect of multi-wall carbon nanotubes on the mechanical properties of natural rubber,” Composite Structures, Vol 75, pp.496-500, 2006.
15. M.D. Frogley, D. Ravich and H.D. Wagner, “Mechanical properties of carbon nanoparticle-reinforced elastomers,” Composites Science and Technology, Vol 63, pp.1647-1654, 2003.
16. C.A. Cooper, R.J. Young and M. Halsall, “Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy ,” Composites: Part A, Vol 32, pp.401-411, 2001.
17. F. Yatsuyanagi, N. Suzuki, M. Ito and H. Kaidou, “Effects of secondary structure of fillers on the mechanical properties of silica filled rubber systems,” Polymer, Vol 42, pp.9523-9529, 2001.
18. L. Mullins, “Effect of stretching on the properties of rubber,” J Rubber Res. Inst. Malaya, Vol 16, pp275, 1947.
19. I. Stevenson, L. David, C. Gauthier, L. Arambourg, J. Davenas, G. Vigier, “Influence of SiO2 fillers on the irradiation ageing of silicone rubbers,” polymer, Vol. 42, pp9287-9292, 2001.
20. E. Guth, “Theory of filler reinforcement,” Journal of Applied Physics, Vol 16, pp.20, 1944.
21. J.C. Halpin,” Stiffness and Expansion Estimates for Oriented Short Fiber Composites.” Journal of Composite Materials, Vol 3, pp.732-734, 1969.
22. J.Q. Pham, C.A. Mitchell, J.L. Bahr, J.M. Tour, R. Krishanamoorti and P.F. Green, “Glass transition of polymer/single-walled carbon nanotube composite films,” Journal of Polymer Science, Part B: Polymer Physics, Vol 41, pp.3339-3345, 2003.
23. H. Xie, B. Liu, Z. Yuan, J. Shen and R. Cheng, “Cure kinetics of carbon nanotube/tetrafunctional epoxy nanocomposites by isothermal differential scanning calorimetry,” Journal of Polymer Science, Part B: Polymer Physics, Vol 42, pp.3701-3712, 2004.
24. F.H. Gojny, M.H.G. Wichmann, U. Koke, B. Fiedler and K. Schulte, “Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content ,” Composites Science and Technology, Vol 64, pp.2363-2371, 2004.
25. J. Kwon and H. Kim, “Comparison of the properties of waterborne polyurethane/multiwalled carbon nanotube and acid-treated multiwalled carbon nanotube composites prepared by in situ polymerization,” Journal of Polymer Science, Part A: Polymer Chemistry, Vol 43, pp.3973-3985, 2005.
26. F. Gojny and K. Schulte, “Functionalisation effect on the thermo- mechanical behaviour of multi-wall carbon nanotube/ epoxy- composites,” Composites Science and Technology, Vol 64, pp.2303-2308, 2004.
27. T. Ramanathan, H. Liu and L.C. Brinson, “Functionalized SWNT/polymer nanocomposites for dramatic property improvement,” Journal of Polymer Science, Part B: Polymer Physics, Vol 43, pp.2269-2279, 2005.
28. X. Gong, J. Liu, S. Baskaran, R.D. Voise and J.S. Young, “Surfactant-Assisted Processing of Carbon Nanotube/Polymer Composites,” Chemistry of Materials, Vol 12, pp.1049-1052, 2000.
29. R. Guzman, A. Miravete, J. Cuartero, A Chiminelli and N. Tolosana, “Mechanical properties of SWNT/epoxy composites using two different curing cycles,” Composites Part B: engineering, Vol 37, pp.273-277, 2006.
30. J. Paul, S. Sindhu, M.H. Numawati and S. Valiyaveettil, “Mechanics of prestressed polydimethylsiloxane-cabon nantube composite,” Applied physics letters, Vol 89, Issue 18, pp.4101, 2006.
31. M.A. Unger and H.P. Chou, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science, Vol 288, pp.113-116, 2006.
32. J.S. Go and S. Shoji, “A disposable, dead volume-free and leak-free in-plane PDMS microvalve,” Sensor and Actuators, pp.438-444, 2004.
33. M. Agarwall, R.A. Gunasekaran and P. Coane, “Polymer-based variable focal length microlens system,” Journal of Micromechanics and Microengineering, Vol 14, pp.1665-1673, 2004.
34. S. Camou, H. Fujita and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab on a Chip, Vol 3, pp.40-45, 2003.
35. S. Li and S. Chen, “Polydimethylsioxane fluidic interconnects for Microfluidic Systems,” IEEE Transaction on Advanced Packaging, Vol 26, pp.242-247, 2003.
36. B.H. Jo, M. Linda and V. Lerberghe, “Three-dimensional micro-channel fabrication in polydimethylsioxane (PDMS) elastomer,” Microelectromechanical Systems, Vol 9, pp.76-81, 2000.
37. P.krulevitch, W. Bennett and J. Hamilton, “Polymer-based packaging platform for hybrid microfluidic systems,” Biomedical Microdevices, Vol 4, pp.301-308, 2002.
38. S. Rimdusit and H. Ishida, “Gelation study of high processability and high reliability ternary systems based on benzoxazine, epoxy, and phenolic resins for an application as electronic packaging materials,” Rheologica Acta., Vol 41, pp.1-9, 2002.
39. 李俊賢, “可攜式無閥壓電為幫浦之設計製作與應用,” 碩士論文, 國立台灣大學應用力學研究所,2000.
40. C.S. Woo., C.H. Lim, C.W. Cho., B. Park, H. Ju, D.H. Min, C.J. Lee, and S. B. Lee, “Fabrication of flexible and transparent single-wall carbon nanotube gas sensors by vacuum filtration and poly(dimethyl siloxane) mold transfer,” Microelectronic engineering, Vol 84, pp.1610-1613, 2007.
41. J.M. Engel, N. Chen, R. Kee, S. Pandya, C. Tucker, Y. Yang, and C. Liu, “Multi-Layer Embedment of Conductive and Non-Conductive PDMS for All-Elastomer MEMS,” The 12th Solid State Sensors, Actuator, and Microsystems Workshop (Hilton Head 2006), Hilton Head Island, SC, June 4 - 8, 2006.
42. ASTM D412, “Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers-Tension,” 2002.
43. J.S. Lai and W.N. Findley, “Elevated temperature creep of polyurethane under nonlinear torsional stress with step changes in torque,” Transactions of society of Rheology, Vol 17, Issue 1, pp. 129-150, 1973.
44. A.Viidik , “Functional properties of collagenous tissues,”. Int Rev
Connect Tissue , Vol 6, pp. 218-252, 1973.
45. V. M. Litvinov, H. Barthel and J. Weis, “Structure of a PDMS layer grafted onto a silica surface studied by means of DSC and solid-state NMR,” Macromolecles, Vol 35, pp. 4356-4364, 2002.
46. H. Yang, Q.T. Nguyen, Y. Ding, Y. Long and Z. Ping, “Investigation of poly(dimethyl siloxane) (PDMS)-solvant interactions by DSC,” Journal of membrane science, Vol 164, pp.73-43, 2000.
47. L. Emer, R. Leahy, J.N. Coleman and W.J. Blau, “Physical properties of novel free-standing polymer-nanotube thin films,” Carbon, Vol 44, pp. 1525-1529, 2006.
48. R.T. Johnson, J.R.M. Bieffeld and J.A. Sayer, “High-temperature and Thermal decomposition of Sylgard 184 and mixtures containing hollow microspherical fillers,” Polymer engineering and Science, Vol 24, pp. 435-441, 1984.
49. 胡德, “高分子物理與機械性質(下),” 渤海堂文化公司, pp. 353,1990.