研究生: |
陳佳聰 Chia-Tsung Chen |
---|---|
論文名稱: |
平行纖維方向裂縫的微觀尺度應力強度因子 Stress Intensity Factor of Micro-Scale Crack in Parallel Fiber Direction |
指導教授: |
蔣長榮
Chun-Ron Chiang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | 複合材料 、裂縫 、應力強度因子 、有限元素 |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
含有裂縫的複合材料在裂縫前端附近的應力分佈,均由應力強度因子(Stress Intensity Factor)K來決定,即K為一評估含裂縫之構件強度的重要指標。本文主要是藉由「ANSYS」軟體來模擬分析非均質性材料對應力強度因子K的影響。
本文中假定巨觀下正交性複合材料的應力強度因子為1,來求相對微觀尺度下平行纖維方向裂縫的無因次應力強度因子K。為了適度簡化問題,本文討論之重點將以第I型「張開型(Opening Mode)裂縫」為主,藉由複合材料之等效彈性理論計算出模型的邊界條件,接著再改變纖維體積分率,分析纖維與基材彈性模數比Ef/Em以及基材波松比(Poisson's Ratio)對K的影響。分析結果顯示,當纖維所占體積分率越大時,裂縫位於中央基材內之裂縫前端的KI値會越小﹔當在相同的纖維體積分率下,纖維與基材彈性模數比越大時,其裂縫前端的KI値會越小﹔而改變基材波松比對於裂縫前端的KI値影響卻很小。
The stress distribution of composite material at the crack tip is determined by Stress Intensity Factor (SIF), K, which is the significant target in material strength evaluation. In this paper, ANSYS is applied to simulate and analyze crack problems and discuss how the Stress Intensity Factor is affected by non-homogeneous materials.
The SIF of orthotropic composite material is macroscopically assumed 1, used to decide the relative nondimensional SIF of crack, paralleled to the direction of fiber in microscope scale. In order to simplify our analysis moderately, we put our emphasis on Mode-I. Equivalent elastic theory of composite material is employed to calculate the boundary condition of the model, and further analysis is conducted to obtain the influence on K with different (Volume Fraction of Fiber)Vf, (Ratio of Elastic Modulus)Ef/Em, and Poisson’s Ratio. The results show that the KI value of crack tip in the matrix lowers with larger volume fraction of fiber. Larger Elastic Modulus of fiber leads to a smaller KI of crack tip under the same volume ratio of fiber while there is no obvious influence to KI of crack tip with different Poisson’s ratios
1. David Broek著,陳文華、張士欽合譯,基本工程破裂力學,世界
學術譯著,國立編譯館出版,台北市,1995。
2. G. M. Boyd, “Fracture Design Practices For Ship
Structures,” in H. Liebowitz(ed), Fracture-An Advanced
Treatise: Volume V Fracture Design of Structures, pp.
383-470, Academic Press, New York and London, 1969.
3. R. A. Naik and W. S. Johnson, observations of Fatigue,
Crack Initiation and Damage Growth in Notched Titanium
MatrixComposites, Composite Materials:Fatigue and
Fracture (Third Volume), STP1110, T. K. O’Brien, Ed.,
ASTM, p753-771, 1991.
4. A. A. Griffith, “The Phenomena of Rupture and Flow in
Solid,”Philosophical Transactions of the Royal Society,
221A, pp. 163-198, 1920.
5. G. C. Sih, and H. Liebowitz,“Mathematical Theories of
Brittle Fracture,” in H. Liebowitz(ed.),Fracture-An
Advanced Treatise: Volumn II Mathematical Fundamentals,
pp.67-190, Academic Press, New York, 1968.
6. R. F. Gibson, Principles of Composite Material
Mechanics, McGraw-Hill Inc. International Editions, 1994.
7. M. D. Snyder, and T, A. Cruse,“ Boundary-Integral
Equation Analysis of Cracked Anisotropic Plates,”
Internal Journal of Fracture, Vol. 11, pp. 315-328, 1975.
8. M. E. Waddoups, J. R. Eisenmann, and B. E. Kaminski,
“Macroscopic Mechanics of Advanced Composite
Materials,” Journal of Composite Materials, Vol. 7,
pp. 446-454,1971.
9. G. C. Sih, and E. P. Chen,“Fracture Analysis of
Unidirectional Composite,” Journal of Composite
Materials,Vol. 7, pp. 230-244, 1973.
10. M. Creager, and P. C. Paris,“Elastic Field Equations
for Blunt Cracks with reference to Stress Corrosion
Cracking,” International Journal of Fracture, Vol.3,
pp. 247-252, 1967.
11.J. P. Benthem,“Stress in the Region of Rounded
Corners,”International Journal of Solids and
Structures,Vol.23,pp.239-252,1987.
12.G. C. Sih, P. C. Paris, and G. R. Irwin,“On Cracks in
Rectilinearly Anisotropic Bodies,” International
Journal of Fracture, Vol. 1,pp. 189-302, 1965.
13.C. R. Chiang,“Kinked Cracks in an Anisotropic
Material,” Engineering Fracture Mechanics, Vol. 39,
pp. 927-930,1991.
14.C. R. Chiang,“The Stress Field for a Blunt Crack in
Anisotropic Material,” International Journal of
Fracture, Vol. 68, R41-R46, 1994, and addendum:
International Journal of Fracture, Vol. 70, R99, 1995.
15.蔡秝凱,“正交性複合材料中裂縫前端的微觀尺度應力強度因
子”,碩士論文,國立清華大學,2004。
16. S. Parhizgar, L. W. Zachary, C. T. Sun,“Application
of the principles of linear fracture mechanics to the
composite materials,”International Journal of Fracture,
Vol. 20, pp. 3-15, 1982.
17. R. D. Cook, D. S. Malkus, and M. E. Plesha, Concepts
and Application of Finite Element Analysis, 3thed.,
John Wiley and Sons, Inc., 1989.
18. C. R. Chiang,“On The Stress Intensity Factors of
Cracks Near an Interface Between Two Media,”
International Journal of Fracture,Vol. 47, R55-R58,
1991.
19. C. R. Chiang,“The Elastic Stress Fields near Blunt
Crack Tips in Orthotropic Materials,” 第十六屆機械工程
研討會論文集,pp. 366-372, 1999.
20. C. R. Chiang,“On Stress Concentration Factors In
Orthotropic Materials,” Journal of the Chinese
Institute of Engineers, Vol. 22,No.3, pp. 301-305, 1999.
21. 洪偉宸,“含缺口平板之脆性破壞分析”,碩士論文,國立成功
大學,2003。
22. C. R. Chiang,“Stress Field Around a Rounded Crack
Tip,” Journal of Applied Mechanics, Vol. 58, pp. 834-
835, 1991.
23.康淵、陳信吉,“ANSYS 入門”,全華科技圖書股份有限公司,
2002。
24.陳新郁、林政仁,“有限元素分析-理論與應用ANSYS”,高立圖
書有限公司,2001。
25.陳精一、蔡國忠,“電腦輔助工程分析ANSYS 使用指南”,全華
科技圖書股份有限公司,2000。