簡易檢索 / 詳目顯示

研究生: 李騰翔
Li, Teng-Hsiang
論文名稱: 超導量子位元製程
Fabrication of Superconducting Qubit
指導教授: 許耀銓
Hoi, Io-­Chun
口試委員: 吳憲昌
Wu, Cen-Shawn
陳永富
Chen, Yung-Fu
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 81
中文關鍵詞: 量子位元迴路量子電動力學黃光微影電子束微影電子束蒸鍍
外文關鍵詞: Quantum bit, Circuit quantum electrodynamics, Photolithography, E-beam lithography, E-beam evaporation
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文旨在製造超導量子迴路的樣品,樣品上有超導量子位元及共面波導,並透過共面波導傳輸微波訊號與超導量子位元產生交互作用,以控制超導量子位元。

      我製作超導量子位元被稱為Transmon,其中的約瑟夫森接面的製作方式為Cross junction,另外Transmon的製作方式分成兩種,第一種為並聯電容和喬瑟夫森接面兩者分開製作,第二種為兩者一起製作。量測樣品的方法為於低溫(10mk)中用磁場控制超導量子位元的躍遷頻率,並輸入微波訊號量測其反射係數,來觀察超導量子位元的躍遷頻率與磁場的關係、反射係數與微波強度的關係、Charging energy的測量。

      我製作的Transmon的EJ/EC可以大於30,Pure dephasing為0.34 MHz、Decoherence rate為0.79 MHz和Relaxation rate為0.9MHz,EC為350MHz。


    The purpose of this thesis is to fabricate a superconducting quantum circuitsample, which consists of superconducting qubit and coplanar waveguide. Inputmicrowave propagate through coplanar waveguide and interact with superconduct­ing qubit to control superconducting qubit.

    The superconducting qubit fabricated is called transmon, and the method tofabricate Josephson junction in transmon is called cross junction. Also transmonhas two methods to fabricate, first is that fabricate shunt capacitance and Joseph­son junction separately in different process, second is that fabricate them together.I measure sample in very low temperature(10mk), adjust magnetic field to con­trol transition frequency of superconducting qubit, measure reflection of input mi­crowave signal to observe relation between transition frequency and magnetic field, relation between reflection and microwave strength, charging energy.

    The EJ/EC of qubit was over 30. Pure dephasing was 0.34 MHz, decoherencerate was 0.79 MHz, and relaxation rate was 0.9MHz. EC was 350MHz。

    摘要---------------------------------------------------------i Abstract-----------------------------------------------------ii 誌謝---------------------------------------------------------iii 1 緒論-------------------------------------------------------1 2 理論背景----------------------------------------------------3 2.1 超導現象下的穿隧效應與其應用元件----------------------------3 2.1.1 約瑟夫森效應--------------------------------------------3 2.1.2 直流超導量子干涉元件-------------------------------------5 2.2 超導量子位元----------------------------------------------7 2.2.1 單一庫柏電子對盒-----------------------------------------8 2.2.2 Transmon-----------------------------------------------9 2.3 電磁波與量子位元的交互作用----------------------------------12 3 實驗方法----------------------------------------------------14 3.1 樣品製程---------------------------------------------------14 3.1.1 黃光微影-對準記號----------------------------------------15 3.1.2 電子束蒸鍍-對準記號--------------------------------------17 3.1.3 黃光微影-共面波導----------------------------------------18 3.1.4 電子束蒸鍍-共面波導--------------------------------------21 3.1.5 電子束微影-約瑟夫森接面-----------------------------------22 3.1.6 電子束蒸鍍與氧化-約瑟夫森接面-----------------------------24 3.1.7 電子束微影-約瑟夫森接面與電容的連接層----------------------27 3.1.8 離子研磨與電子束蒸鍍-約瑟夫森接面與電容的連接層-------------28 3.2 量測系統---------------------------------------------------29 3.2.1 常溫電阻量測方法------------------------------------------29 3.2.2 低溫系統-------------------------------------------------30 3.2.3 磁場強度與躍遷頻率關係的量測方法----------------------------32 3.2.4 微波強度與反射係數關係的量測方法----------------------------34 3.2.5 Charging Energy 的量測方法--------------------------------34 4 實驗結果------------------------------------------------------36 4.1 製程結果----------------------------------------------------36 4.1.1 對準記號製程結果-------------------------------------------36 4.1.2 共面波導製程結果-------------------------------------------38 4.1.3 約瑟夫森接面與連接層製程結果--------------------------------40 4.2 量測結果----------------------------------------------------43 4.2.1 常溫電阻量測結果-------------------------------------------43 4.2.2 磁場強度與躍遷頻率關係的量測結果----------------------------49 4.2.3 微波強度與反射係數關係的量測結果----------------------------58 4.2.4 Charging Energy 的的量測結果------------------------------61 5 結論----------------------------------------------------------63 5.0.1 未來展望--------------------------------------------------63 A 氧電漿表面處理的驗證-------------------------------------------64 B EVG620 操作方法-----------------------------------------------66 C ELS7500EX操作方法---------------------------------------------71 D MEB550 操作方法-----------------------------------------------75 參考文獻--------------------------------------------------------80

    [1] R. P. Feynman, “Simulating physics with computers,” International Journal of Theoretical
    Physics, pp. 467–488, 1982.
    [2] M. A. Nielsen and I. L. Chuang, “Quantum computation and quantum information,” Cambridge
    University Press, p. 15, 2000.
    [3] B. D. Josephson, “Possible new effects in superconductive tunnelling,” Physics Letters,
    pp. 251–253, 1962.
    [4] R. C. Jaklevic, J. Lambe, A. H. Silver, and J. E. Mercereau, “Quantum interference effects
    in josephson tunneling,” Phys. Rev. Lett., pp. 159–160, 1964.
    [5] Y. Nakamura, Y. A. Pashkin, and J. S. Tsai, “Coherent control of macroscopic quantum
    states in a singlecooperpair
    box,” Nature, p. 786–788, 1999.
    [6] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H.
    Devoret, S. M. Girvin, , and R. J. Schoelkopf, “Chargeinsensitive
    qubit design derived
    from the cooper pair box,” Phys. Rev. A, p. 042319, 2007.
    [7] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.S.
    Huang, J. Majer, S. Kumar, S. M.
    Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting
    qubit using circuit quantum electrodynamics,” Nature, pp. 162–167, 2004.
    [8] H. Onnes, “Further experiments with liquid helium. c. on the change of electric resistance
    of pure metals at very low temperatures etc. iv. the resistance of pure mercury at helium
    temperatures,” KNAW Proceedings, pp. 1274–1276, 1911.
    [9] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Microscopic theory of superconductivity,”
    Phys. Rev., pp. 162–164, 1957.
    [10] D. T.V. and T. C.W., “Principles of superconductive devices and circuits,” Prentice Hall
    PTR, 1998.
    [11] T. Duty, D. Gunnarsson, K. Bladh, and P. Delsing, “Coherent dynamics of a josephson
    charge qubit,” Physical Review B, p. 140503, 2004.
    [12] K. Lehnert, K. Bladh, L. F. Spietz, D. Gunnarsson, D. I. Schuster, P. Delsing, and R. J.
    Schoelkopf, “Measurement of the excitedstate
    lifetime of a microelectronic circuit,”
    Phys. Rev. Lett., p. 027002, 2003.
    [13] K. Koshino and Y. Nakamura, “Control of the radiative level shift and linewidth of a
    superconducting artificial atom through a variable boundary condition,” New Journal of
    Physics, p. 10, 2012.
    [14] K. Zhang, M.M.
    Li, Q. Liu, H.F.
    Yu, and Y. Yu, “Bridgefree
    fabrication process for
    al/alox/al josephson junctions,” Chin. Phys. B, p. 078501, 2017.
    [15] D. H. Olson, “Ion millinginduced
    esd damage during mr head fabrication,” Journal of
    Electrostatics, pp. 291–304, 1999.

    QR CODE