研究生: |
蕭志仲 Chih-Chung Hsiao |
---|---|
論文名稱: |
溫度對奈米尺度下接觸物體間黏滯現象之影響:分子動力學模擬及原子力顯微鏡實驗 Temperature Effect on Adhesion between Contact Bodies in the Nano-Scale:Molecular Dynamics Simulation and Atomic Force Microscope Experiment |
指導教授: |
宋震國
Cheng-Kuo Sung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 107 |
中文關鍵詞: | 分子動力學 、黏滯現象 、原子力顯微鏡 |
外文關鍵詞: | Molecular Dynamics Simulation, Adhesion, Atomic Force Microscope |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用分子動力學模擬(Molecular Dynamics Simulation)以及原子力顯微鏡(Atomic Force Microscope)實驗來探討溫度對奈米尺度下接觸物體間黏滯現象的影響及其物理行為。在分子動力學模擬中,採用Morse勢能函數來描述金原子間的作用力,系統模型利用約一萬顆的金(Au)原子以面心立方(FCC)的排列方式,建構成原子力顯微鏡中探針與基材的幾何形貌,其中角錐形探針是由3632顆金原子所組成,立方體基材則是由7168顆金原子所組成。本研究發現,溫度會對原子級的跳躍接觸(Jump-to-contact)現象造成影響,當系統溫度愈高時,此現象越早發生。另外,探針與基材分離時,因黏滯造成的原子遷移產生了頸縮(Necking)現象,緊縮的高度與溫度成正比。在緊縮現象斷裂後,接著即於基材表面形成島狀結構(Island structure),此奈米結構(頸縮與島狀結構)尺寸與溫度的高低為正相關;黏滯力的大小是隨著溫度升高而下降。研究結果也顯示,由於黏滯現象的作用,探針與基板間機械式的接觸和奈米線及奈米點的形成有很大的關連性。
實驗部份利用表面鍍金的矽探針與基材,在不同環境溫度下來進行力量曲線(Force curve)的繪製與黏滯力量的量測。由實驗結果發現,黏滯力與模擬結果的趨勢相符隨環境溫度升高而降低。比較古典黏滯理論所求得之黏滯力大小與實驗結果有很大的差異,此差異主要說明了連體理論對於介觀尺寸物體的不適用。所以使用古典理論來估算奈米尺度下接觸物體間的物理行為是不適合的。
This thesis presented an investigation of the temperature effect on adhesion phenomenon and its physical behavior between contact bodies in the nano-scale by using molecular dynamics simulation and experiments. In the molecular dynamics simulation, the Morse potential function was employed to simulate the intermolecular forces between atoms. The system model is arranged in order according to face-centered cubic (FCC) structure and constructed as the AFM tip and substrate system, which consists of about 10800 Au atoms. The tip with the pyramidal shape was formed from 3632 Au atoms, while the substrate with the cuboid shape was from 7168 Au atoms. The simulation results reveal that the system temperature affects the atomistic jump-to-contact behavior. The higher the system temperature is, the earlier the contact occurs. In addition, owing to the atom migrations caused by adhesion, an extended neck is gradually formed upon the retraction of the tip from contact and the neck height is positively correlated to the system temperature. After the neck breaks, an island shape structure is formed on the substrate and the size of the structure also has a positive correlation with the system temperature. Adhesion force is calculated during the tip ascending period, the results also show the adhesion force is decreasing with the increase of system temperature.
In the experimental study, the Au-coated Si tip and substrate are utilized to plot the force curve at different ambient temperature. The adhesion force is measured from the force curve. The trends of adhesion force agree with the results of simulation, it demonstrated that the adhesion force for the Au tip and substrate is decreasing with increasing temperature. By comparing with the adhesion forces estimated from the classical adhesion theories, the experimental results exhibit a huge variance. This variance on the adhesion force may attribute to the applicability of the continuum theory for the mesoscopic bodies. So, using the classical adhesion theories to estimate the physical behavior of the contact bodies in the nano-scale may not be appropriate.
1. 尹邦耀,”奈米時代”,五南圖書公司,台北市,2002。
2. Jacob N. Israelachvili, “Intermolecular and Surface Forces- with Applications to Colloidal and Biological Systems,” Academic press, 1985.
3. T. Fukuda, F. Arai, and L. Dong, “Nano Robotic World - From Micro to Nano,” Proc. of the IEEE Int. Conf. on Robotic and Automation, plenary speech Ⅲ, 2001.
4. http://www.ntmdt.com
5. http://www.research.ibm.com/nanoscience/manipulation.html
6. Tobias Hertel, Richard Martel, Phaedon Avouris, “Manipulation of Individual Carbon Nanotubes and Their Interaction with Surfaces,” J. Phys. Chem, Vol. 102, pp.910-915, 1998.
7. David Christopher, Roger Smith and Asta Richter, “Atomistic Modeling of Nanoindentation Iron and Silver,” Nanotechnology, Vol. 12, pp.372-383, 2001.
8. G. V. Dedkov, “Review Article: Experimental and Theoretical Aspects of the Modern Nanotribology,” Phys. Stat. Sol. (a), Vol. 179, pp. 3-75, 2000.
9. B. Bhushan, “Handbook of Micro/Nano Tribology,” 2nd Ed., CRC Press, Boca Raton, 1995
10. N. Agraït, G. Rubio, and S. Vieira, “Plastic Deformation of Nanometer-scale Gold Connective Necks,” Phys. Rev. Lett., Vol. 74(20), pp. 3995-3998, 1995.
11. D. Fujita and T. Kumakura, “Reproducible Fabrication of Metallic Silver Nanostructures on a Si(111)-(7×7) Surface by Tip-Material Transfer of a Scanning Tunneling Microscope,” Appl. Phys. Lett., Vol. 82(14), pp.2329-2331, 2003.
12. D. Fujita, Q. Jiang, and H. Nejoh, “Fabrication of Gold Nanostructures on a Vicinal Si(111)-7×7 Surface Using Ultrahigh Vacuum Scanning Microscope and a Gold-Coated Tungsten Tip,” J. Vac. Sci. Technol. B, Vol. 14(6), pp. 3413-3419, 1996.
13. T. C. Chang, C. S. Chang, H. N. Lin, and T. T. Tsong, “Creation of Nanostructures on Gold Surfaces in Nonconducting Liquid,” Appl. Phys. Lett., Vol. 67(7), pp. 903-905, 1995.
14. J. I. Pascual, J. Méndez, J.Gómez-Herrero, A. M. Baró, and N. García, “Quantum Contact in Gold Nanostructures by Scanning Tunneling Microscopy,” Phys. Rev. Lett., Vol. 71(12), pp. 1852-1855, 1993.
15. D. Erts, A. Lõhmus, R. Lõhmus, H. Olin, A. V. Pokropivny, L. Ryen, and K. Svensson, “Force Interactions and Adhesion of Gold Contacts Using a Combined Atomic Force Microscope and Transmission Electron Microscope,” Appl. Surf. Sci., Vol. 188, pp. 460-466, 2002.
16. K. Takayanagi, Y. Kondo, and H. Ohnishi, “Miniaturized STM Working Simultaneously in UHV Electron Microscope-Conductance Quantization of Suspended Gold Nanowires,” JEOL News, Vol. 34E(1), pp. 20-23, 1999.
17. G. Rubio, N. Agraït, and S. Vieira, “Atomic-Sized Metallic Contacts: Mechanical Properties and Electronic Transport,” Phys. Rev. Lett., Vol. 76(13), pp. 2302-2305, 1996.
18. T. N. Todorov and A. P. Sutton, “Force and Conductance Jumps in Atomic-scale Metallic Contacts,” Phys. Rev. B, Vol. 54(20), pp. 14234-14237, 1996.
19. S. Blom, H. Olin, J. L. Costa-Krämer, N. García, M. Jonson, P. A. Serena, and R. I. Shekhter, “Free-Electron Model for Mesoscopic Force Fluctuations in Nanowires,” Phys. Rev. B, Vol. 57(15), pp. 8830-8833, 1998.
20. J. Israelachvili, “Intermolecular & Surface Forces,” 2nd Ed., Academic Press, San Diego, 1992.
21. J. H. Irving and J. G. Kirkwood,” The Statistical Mechanical Theory of Transport Properties. Ⅳ. The Equations of Hydrodynamics,” J. Chem. Phys., Vol. 18, pp. 817-823,1950.
22. J. M. Haile, “Molecular Dynamics Simulation,” John Wiley & Sons, New York, 1992.
23. 北區奈米機電基礎培訓班課程講義。
24. D. S. Rimai, D. J. Quesnel, and A. A. Busnaina, “The Adhesion of Dry Particles in the Nanometer to Micrometer-Size Range,” Colloids and Surfaces A, pp.3-10, 2000.
25. Bhushan, Ashok V. Kulkarni, “Effect of Normal Load on Microscale Friction Measurements”, Thin Solid Films, 278, pp.49-56, 1996
26. K. L. Johnson, K. Kendall, and A. D. Roberts, “Surface Energy and the Contact of Elastic Body,” Proc. Roy. Soc. London. A., Vol. 324, pp.301-313, 1971.
27. B. V. Derjaguin, V. M. Muller, and Y. P. Toporov, “Effect of Contact Deformations on the Adhesion of Particles,” J. Colloid Interface Sci., Vol.53, pp.314-326, 1975.
28. D. Maugis, “Adhesion of Spheres: The JKR-DMT Transition Using a Dugdale Model,” J. Colloid Interface Sci., Vol. 150, pp.243-269, 1992.
29. K. Maekawa and A. Itoh, “Friction and Tool Wear in Nano-scale Maching — a Molecular Dynamics Approach,” Wear, Vol. 188, pp. 115-122, 1995
30. J. A. Harrison, C. T. White, R. J. Colton, and D. W. Brenner, “Molecular Dynamics Simulations of Atomic-scale Friction of Diamond Surface,” Phys. Rev. B, Vol. 46, No.15, pp. 9700-9708, 15 October 1992
31. V. V. Pokropivny, V. V. Skorokhod, A. V. Pokropivny, “Atomic Mechanism of Adhesive Wear during Friction of Atomic-Sharp Tungsten Asperity Over (110) Bcc-Iron Surface”, Materials Letters 31, pp.49-54, 1997.
32. Jun Shimizu, Hiroshi Eda, Masashi Yoritsune and Etsuji Ohmura, “Molecular Dynamics Simulation of Friction on the Atomic-scale”, Nanotechnology, 9, pp.118-123, 1998.
33. T. H. Fang, “Study on the Nano-scale Processing Technology Using Atomic Force Microscopy,” Ph.D. Dissertation, National Cheng Kung University, Tainan, Taiwan, 2000.
34. Hualiang Yu, James B Adams and Louis G Hector Jr, “Molecular Dynamics Simulation of High-Speed Nanoindentation,” Modelling Simul. Mater.Sci. Eng. 10 319-329,2002
35. M. Saint Jean, S. Hudlet, C. Guthmann, and J. Berger, “van der Waals and Capacitive Forces in Atomic Microscopies,” J. Appl. Phys, pp.5245-5248, 1999.
36. David Kofke, “Text of Course CE530,” Department of Chemical Engineering, SUNY Buffalo, 2003.
37. R. Polke, Dissertation, Universität Karlsruhe, 1971.
38. Stefan Berbner and Friedrich Löffler, ”Influence of High Temperatures on Particle Adhesion,” Powder Technology, Vol. 78, pp.273-280, 1994
39. Shijian Luo and C.P. Wong, “Influence of Temperature and Humidity on Adhesion of Underfills for Flip Chip Packaging,” 2001 Electronic Components and Technology Conference
40. Gary Toikka,+ Geoffrey M. Spinks, and Hugh R. Brown*, “Fine Particle Adhesion Measured at Elevated Temperatures Using a Dedicated Force Rig ,” Langmuir, Vol.17, pp.6207-6212, 2001
41. H. J. Mamin, P. H. Guethner, and D. Rugar, “Atomic Emission from a Gold Scanning- Tunneling-Microscope Tip,” Physical Review Letters, vol. 65, no.19, 1990
42. J. I. Pascual, J. Mendez, J. Gomez-Herrero, A. M. Baro, and N. Garcia, “Quantum Contact in Gold Nanostructures by Scanning Tunneling Microscopy,” Physical Review Letters, vol. 71, no.12, 1993.
43. N. Agrait, G. Rubio, and S. Vieira, “Plastic Deformation of Nanometer-scale Gold Connective Necks,” Physical Review Letters, vol. 74, no.20, 1995.
44. C. S. Chang, W. B. Su, and Tien T. Tsong, “Field Evaporation between a Gold Tip and a Gold Surface in the Scanning Tunneling Microscope Configuration,” Physical Review Letters, vol. 72, no.4, 1994.
45. D. Fujita, Q. Jiang, and H. Nejoh, “Fabrication of Gold Nanostructures on a Vicinal Si(111) 7x7 Surface Using Ultrahigh Vacuum Scanning Tunneling Microscope and a Gold-Coated Tungsten Tip,” J. Vac. Sci. Technol. B 14(6), Nov/Dec, 1996.
46. D. H. Huang, T. Nakayama and M. Aono, “Platinum Nanodot Formation by Atomic Point Contact with a Scanning Tunneling Microscope Platinum Tip,” Appl. Phys. Lett., vol. 73 no.23,1998
47. F. Podczeck, “Particle-particle Adhesion in Pharmaceutical Powder Handling,” Imperial College Press, London, 1998.
48. E. Meyer, R. M. Overney, K. Dransfeld, and T. Gyalog, “Nanoscience: Friction and Rheology on the Nanometer Scale,” World Scientific, 1998.
49. D. S. Rimai, L. P. Demejo, and R. C. Bowen, “Mechanics of Particle Adhesion,” Fundamentals of Adhesion and Interfaces, VSP, Netherlands, 1995.
50. Q. Ouyang, K. Ishida, and K. Okada, “Investigation of Micro-Adhesion by Atomic Force Microscopy,” Appl. Surf. Sci., Vol. 170, pp.644-648, 2001.
51. R. S. Bradley, Trans. Faraday Soc.,32. 1088 (1936)
52. B. V. Derjaguin, Kolloid Zhur., 69. 155 (1934)
53. D. S. Rimai, Lawrence P. DeMejo, Ray Bowen, and Jeffrey D. Morris, “Adhesion Induced Deformations,” Particles on Surfaces, Marcel Dekker, Inc. 1995.
54. K. L. Johnson, “Contact Mechanics,” Cambridge University Press, London, 1985.
55. D. Tabor, “Surface Forces and Surface Interactions,” J. Colloid Interface Sci., Vol. 58, No. 1, 1977.
56. J. A. Greenwood, Proc. Roy. Soc. London A, Vol. 453, 1277, 1997.
57. K. L. Johnson, and J. A. Greenwood, “An Adhesion Map for the Contact of Elastic Sphere,” J. Colloid Interface Sci., Vol. 150, pp.326-333, 1997.
58. U. Landman and W. D. Luedtke, “Nanomechanics and Dynamics of Tip-Substrate Interactions,” J. Vac. Sci. Technol. B, Vol. 9 (2), pp. 414-422, 1991.
59. F. B. Neal, “Molecular Dynamics Simulation of Adhesion and Nanoindentation of Gallium Arsenide,” Ph.D. Dissertation, Louisiana State University, USA, 2002.
60. J. E. Lennard-Jones, “The Determination of Molecular Fields.Ⅰ. From the Variation of the Viscosity of a Gas with Temperature,” Proc. Roy. Soc. (Lond.), 106A, 441, 1924; “The Determination of Molecular Fields.Ⅱ. From the Variation of the Viscosity of a Gas with Temperature,” Proc. Roy. Soc. (Lond.), 106A, 463, 1924.
61. A. Rahman, “Correlations in the Motions of Atoms in Liquid Atom,” Phys. Rev., 136A, pp. 405-11, 1964.
62. L. A. Girifalco and V. G. Weizer, “Application of the Morse Potential Function to Cubic Metals,” Phys. Rev., Vol. 114, pp. 687-690, 1959.
63. S. Maruyama, “Molecular Dynamics Methods in Microscale Heat transfer,” Handbook of Heat Exchanger Update, 2002, in press.
64. L. Verlet, “Computer ‘Experiments’ on Classical FluidsⅡ, Equilibrium Correlation Function,” Phys. Rev, Vol. 165, pp. 201~14, 1968.
65. http://www.nanosensors.com