簡易檢索 / 詳目顯示

研究生: 廖唯誠
Liao, Wei-Cheng
論文名稱: 竊聽者存在之傳送波束成型設計:以人造雜訊輔助之最佳化方法
QoS-Based Transmit Beamforming in the Presence of Eavesdroppers: An Optimized Artificial-Noise-Aided Approach
指導教授: 祁忠勇
Chi, Chong-Yung
張縱輝
Chang, Tsung-Hui
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 54
中文關鍵詞: 傳送波束成型凸面最佳化問題人造雜訊保密傳輸
外文關鍵詞: transmit beamforming, convex optimization problem, artificial noise, secure transmission
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在最近幾年中,有鑑於無線通訊系統通道的開放特性(broadcast, open nature),如何防止訊息被竊聽者(eavesdropper)接收的保密傳輸(secure communication)技術受到人們越來越多的探討。此篇論文將研究如何使用傳送波束成型(transmit beamforming)達成保密傳輸的需求;也就是傳送者(transmitter)如何加強合法使用者(intended receiver)的服務質量(Quality of Service, QoS)與同時限制竊聽者的接收品質(reception QoS)。本論文採用訊號干擾加雜訊比(signal-to-interference-and-noise-ratio, SINR)做為服務質量的基準,進而探討保密傳送波束成型技術以達成 i)竊聽者的訊號干擾加雜訊比不超過事先所設定的臨界值(threshold) ii)最大化或保證合法使用者的服務質量不低於所設定的訊號干擾加雜訊比。為達此些目的,我們考慮傳送者同時傳送訊息資料及人造雜訊(artificial noise)以干擾竊聽者之接收能力,不同於現存文獻中並未最佳化(optimize)人造雜訊之使用,我們將探討傳送者如何經由合法使用者與竊聽者的通道狀態信息(channel state information, CSI)共同最佳化傳送波束成型與人造雜訊之使用。
    由於本論文中所探討的問題並非屬於凸面最佳化(convex optimization)問題,而是屬於非定常多項式時間難解(NP-hard)問題,因此一般來說此問題並無普遍有效率的算法。在此篇論文中,我們將使用半正定鬆弛演算法(semidefinite relaxation, SDR)來處理此保密通道波束問題;此外,我們證明在某些特定具代表性的通道條件下,半正定鬆弛演算法可被用以取得保密傳送波束成型問題的最佳解。在本論文中,我們亦探討如何延伸保密傳送波束演算法用以解決額外的單天線功率限制(per-antenna power constraint)或存在多個合法使用者的情形。經由電腦模擬,我們發現使用人造雜訊對於所探討之保密傳送波束成型問題無論在所消耗的傳輸功率或合法使用者的服務質量皆比不使用人造雜訊的方法有顯著的改進。


    Secure signal transmission techniques have been receiving growing attention in recent years, as a powerful lternative to blocking eavesdropping attempts in an open wireless medium. This thesis proposes a secure transmit beamforming approach whose goal is to simultaneously enhance an ntended receiver's quality-of-service (QoS) and degrade eavesdroppers' QoSs. Speci cally, we establish design formulations that i) constrain the maximum allowable signal-to-interference-and-noise ratios (SINRs) of the eavesdroppers; and that ii) provide the intended receiver with a satisfactory SINR through either a guaranteed SINR constraint or SINR maximization. The proposed designs incorporate arti cial noise (AN), where a suitable amount of AN is added
    in the transmitted signal to degrade the eavesdroppers' interception. Unlike existing AN-aided designs where the use of AN is usually not optimized, our designs advocate
    joint optimization of the transmit beamforming weights and AN spatial distribution in accordance with the channel state information (CSI) of the intended receiver and
    eavesdroppers. Our formulated design problems are nonconvex, and they are shown to be NP-hard in general. We handle the design problems by semide nite relaxation (SDR). We prove that SDR can exactly solve the design problems for a practically representative class of problem instances. Extensions to the per-antenna power constraint case and a challenging multiple intended receivers case are also examined. Simulation results illustrate that the proposed AN-aided designs can yield signi cant power savings or SINR enhancement over their no-AN counterparts.

    Chinese Abstract ii Abstract iii Acknowledgments iv List of Figures vii 1 Introduction 1 2 Signal Model and General Problem Statement 6 3 Power Minimization Design for AN-Aided Transmit Beamforming 10 3.1 The Problem Nature . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Semidefinite Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 Rank-One Optimality of SDR . . . . . . . . . . . . . . . . . . . . . . 14 4 SINR Maximization Design for AN-Aided Transmit Beamforming 18 5 Extension to Additional Per-Antenna Power Constraint 23 5.1 Power Minimization Design Formulation with the Additional Per-Antenna Power Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.2 SINRMaximization Design Formulation with the Additional Per-Antenna Power Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6 Extension to Multigroup Multicast 30 6.1 MultigroupMulticast SystemModel . . . . . . . . . . . . . . . . . . 30 6.2 Max-Min-Fair Design Formulation . . . . . . . . . . . . . . . . . . . . 32 7 Simulation Results 35 7.1 Example 1: SINRMaximization Design, Far-field ULA Case . . . . . 37 7.2 Example 2: Power Minimization Design, Instantaneous CSI Case . . . 38 7.3 Example 3: SINR Maximization Design, Correlation-based CSI Case . 39 7.4 Example 4: Per-Additional Power Constraint Designs, Instantaneous CSI Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 7.5 Example 5: Multigroup Multicast Max-Min-Fair Design, Instantaneous CSI Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 8 Conclusions 45 A Appendix 46 A.1 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 46 A.2 Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 48 A.3 Proof of Lemma 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Bibliography 51

    [1] A. B. Gershman, N. D. Sidiropoulos, S. Shahbazpanahi, M. Bengtsson, and B. Ottersten, “Convex optimization-based beamforming: From receive to transmit and network designs,” IEEE Signal Process. Mag., Special Issue on Convex Optimization for Signal Processing, vol. 27, no. 3, pp. 62–75, May 2010.
    [2] Z.-Q. Luo and T.-H. Chang, “SDP relaxation of homogeneous quadratic optimization: Approximation bounds and applications,” in Convex Optimization in Signal Processing and Communications, Chapter 4, UK: Cambridge University, 2010.
    [3] F. Rashid-Farrokhi, K. J. R. Liu, and L. Tassiulas, “Transmit beamforming and power control for cellular wireless systems,” IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1437–1450, 1999.
    [4] M. Bengtsson and B. Ottersten, “Optimal and suboptimal transmit beamforming,” Chapter 18 in Handbook of Antennas in Wireless Communications, L. C. Godara, Ed., CRC Press, Aug. 2001.
    [5] M. Schubert and H. Boche, “Solution of the multiuser downlink beamforming problem with individual SINR constraints,” IEEE Trans. Veh. Tech., vol. 53, no. 1, pp. 18–28, Jan. 2004.
    [6] A. Wiesel, Y. C. Eldar, and S. Shamai, “Linear precoding via conic optimization for fixed MIMO eceivers,” IEEE Trans. Signal Process., vol. 54, no. 1, pp. 161–176, Jan. 2006.
    [7] N. D. Sidiropoulos, T. D. Davidson, and Z.-Q. Luo,“Transmit beamforming for physical-layer multicasting,” IEEE Trans. Signal Process., vol. 54, no. 6, pp. 2239–2251, June 2006.
    [8] E. Karipidis, N. D. Sidiropoulos, and Z.-Q. Luo, “Quality of service and maxmin fair transmit beamforming to multiple cochannel multicast groups,” IEEE Trans. Signal Process., vol. 53, no. 3, pp. 1268–1279, March 2008.
    [9] W. Yu and T. Lan, “Transmitter optimization for the multi-antenna downlink with per-antenna power constraints,” IEEE Trans. Signal Process., vol. 55, no. 6,
    pp. 2646–2660, Jun. 2007.
    [10] D. Hammarwall, M. Bengtsson, and B. Ottersten, “Downlink beamforming with indefinite shaping constraints,” IEEE Trans. Signal Process., vol. 54, no. 9, pp. 3566–3580, Sep. 2006.
    [11] W. Yu and T. Lan, “Transmitter optimization for the multi-antenna downlink with per-antenna power constraints,” IEEE Trans. Signal Process., vol. 55, no. 1,
    pp. 2646–2660, Jun. 2007.
    [12] E. Karipidis, N. D. Sidiropoulos, and Z.-Q. Luo, “Far-field multicast beamforming for uniform linear antenna arrays,” IEEE Trans. Signal Process., vol. 55, no. 10, pp. 4916–4927, Oct. 2007.
    [13] Y. Huang and D. P. Palomar, “Rank-constrained separable semidefinite program with applications to optimal beamforming,” IEEE Trans. Signal Process., vol. 58, no. 2, pp. 664–678, Feb. 2010.
    [14] V. Havary-Nassab, S. Shahbazpanahi, A. Grami, and Z.-Q. Luo, “Distributed beamforming for relay networks based on second-order statistics of the channel state information,” IEEE Trans. Signal Process., vol. 56, no. 9, pp. 4306–4316, Sep. 2008.
    [15] K. T. Phan, S. A. Vorobyov, N. D. Sidiropoulos, and C. Tellambura, “Spectrum sharing in wireless networks via QoS-aware secondary multicast beamforming,” IEEE Trans. Signal Process., vol. 57, no. 6, pp. 2323–2335, June 2009.
    [16] A. D. Wyner, “The wiretap channel,” Bell System Technical Journal, vol. 54, pp. 1355–1387, 1975.
    [17] I. Csiszar and J. Korner, “Broadcast channels with confidential messages,” IEEE Trans. Info. Theory, vol. 24, no. 3, pp. 339–348, May 1978.
    [18] F. Oggier and B. Hassibi, “The secrecy capacity of the MIMO wiretap channel,” in IEEE Int’l Symp. on Info. Theory, July 2008, pp. 524–528.
    [19] A. Khisti and G. W. Wornell, “Secure transmission with multiple antennas: The MIMOME wiretap channel,” to appear in IEEE Trans. Inform. Theory, 2010.
    [20] T. Liu and S. Shamai (Shitz), “A note on the secrecy capacity of the multipleantenna wiretap channel,” IEEE Trans. Inf. Theory, vol. 55, no. 6, pp. 2547–2553, Jun. 2009.
    [21] R. Bustin, R. Liu, H. V. Poor, and S. Shamai (Shitz), “An MMSE approach to the secrecy capacity of the MIMO Gaussian wiretap channel,” in IEEE Int’l Symp. on Info. Theory, June 28-July 3, 2009, pp. 2602–2606.
    [22] P. Gopala, L. Lai, and H. El Gamal, “On the secrecy capacity of fading channels,” IEEE. Trans. Inform. Theory, vol. 54, no. 10, pp. 4687–4698, 2008.
    [23] L. Dong, Z. Han, A. Petropulu, and H. V. Poor, “Secure wireless communications via cooperation,” in Proc. Allerton Conference on Communication, Control, and Computing, Monticello, IL, USA, Sept. 23-26, 2008, pp. 1132–1138.
    [24] L. Dong, Z. Han, A. P. Petropulu, and H. V. Poor, “Amplify-and-forward based cooperation for secure wireless communications,” in ICASSP 2009, April 2009, pp. 2613–2616.
    [25] A. L. Swindlehurst, “Fixed SINR solutions for the MIMO wiretap channel,” in Proc. of IEEE ICASSP, Taipei, Taiwan, April 19-24, 2009, pp. 2437–2440.
    [26] A. Mukherjee and A. L. Swindlehurst, “Fixed-rate power allocation strategies for enhanced secrecy in mimo wiretap channels,” in Proc. of IEEE SPAWC, Perugia, Italy, June 21-24, 2009, pp. 344–348.
    [27] L. Zhang, R. Zhang, Y.-C. Liang, Y. Xin, and S. Cui, “On the relationship between the multi-antenna secrecy communications and cognitive radio communications,” IEEE Trans. Commun., vol. 58, no. 6, pp. 1877–1886, Jun. 2010.
    [28] S. Goel and R. Negi, “Guaranteeing secrecy using artificial noise,” IEEE. Trans. Wireless Commun., vol. 7, no. 6, pp. 2180–2189, June 2008.
    [29] W.-K. Ma, T. N. Davidson, K. M. Wong, Z.-Q. Luo, and P.-C. Ching, “Quasimaximum-likelihood multiuser detection using semidefinite relaxation with applications to synchronous CDMA,” IEEE Trans. Signal Process., vol. 50, no. 4, pp. 912–922, April 2002.
    [30] Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang, “Nonconvex quadratic optimization, semidefinite relaxation, and applications,” IEEE Signal Process.
    Mag., Special Issue on Convex Optimization for Signal Processing, vol. 27, no. 3, pp. 20–34, May 2010.
    [31] W.-C. Liao, T.-H. Chang, W.-K. Ma, and C.-Y. Chi, “Qos-based transmit beamforming in the presence of eavesdroppers: An optimized artificial-noise-aided approach,” submitted to IEEE Trans. Signal Process. (under revision).
    [32] J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones,” Optimization Methods and Software, vol. 11-12, pp. 625–653, 1999.
    [33] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming,” http://stanford.edu/∼boyd/cvx, June 2009.
    [34] G. Pataki, “On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal eigenvalues,” Math. Oper. Res., vol. 23, no. 2, pp. 339–358, 1998.
    [35] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK: Cambridge University Press, 2004.
    [36] A. Charnes and W. W. Cooper, “Programming with linear fractional functionals,” Naval Research Logistics Quarterly, vol. 9, pp. 181–176, 1962.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE