研究生: |
謝志威 |
---|---|
論文名稱: |
在控制氣氛及真空中藉由熱處理氮化鋯薄膜成長氧化鋯 Growth of ZrO2 by Heat Treating ZrN Thin Film under Controlled Atmosphere |
指導教授: |
黃嘉宏
喻冀平 |
口試委員: |
駱榮富
李志偉 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 109 |
中文關鍵詞: | 氧化鋯 、氧化 、潤濕性 、熱處理 、抗腐蝕性 |
外文關鍵詞: | ZrO2, oxidation, wettability, heat treatment, corrosion resistance |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的在於藉由熱處理的方式於氮化鋯薄膜上成長二氧化鋯,希望可以解決二氧化鋯在304不鏽鋼上的潤濕性問題,另一方面也將研究氮化鋯的氧化機制。首先利用中空陰極放電離子覆膜系統將氮化鋯薄膜鍍著於Si基材及AISI 304不鏽鋼基材,之後將試片在不同的熱處理環境中進行700°C到1000°C、持溫1到4小時的熱處理。選用的熱處理環境為真空(510-6 Torr)以及氮氫混和氣體(N2/H2=9),希望藉由減少環境中的含氧量來避免劇烈的氧化。在氮氫環境中,當熱處理溫度高於800°C且經過1小時的持溫便會完全氧化,然而在真空環境中即使溫度高達1000°C、持溫時間長達4小時,氮化鋯仍為試片的主要相。此外在兩種環境下熱處理後的試片其表面形貌、微結構和成分亦有明顯不同,推測在不同的環境中表面有著不同的結構因而導致了氧化行為的差異。在氮氫環境中表面氧化層不具保護性,所以氧可以很容易地與氮化鋯反應,而氧化所產生的體積膨脹則會導致表面空泡及裂縫產生,一旦表面有了破裂,則系統中的氧便可以再繼續與未氧化的氮化鋯反應,加速了氧化速率;相較之下表面氧化層在真空中則具有保護性,可以有效的抑止氧向試片內部擴散,因此氧化速度慢且表面仍可以維持完好。以不鏽鋼為基材的試片即使經過800°C持溫4小時的真空熱處理後表面依然可以看到殘餘的ZrN。經過500小時的鹽霧測試後,所有在真空熱處理中氧化的ZrN試片表面腐蝕面積均在0.2%以下,並且不會有脫落的現象,這表示所有試片均有著相當良好的抗腐蝕性,同時也證實了利用熱處理方法於不鏽鋼基材上成長氧化鋯的可行性。另外,當試片在1000°C進行持溫一小時的真空熱處理後,應力可以有效的被釋放,試片亦不會有明顯性質改變。
The purpose of this study is to solve the wettability issue by growing ZrO2 from heat treatment of the ZrN thin films on stainless steel substrate and investigate the oxidation mechanism of ZrN films in different atmospheres. ZrN thin films were deposited on Si and 304 stainless steel substrates using hollow cathode discharge ion-plating (HCD-IP), and were annealing at temperatures ranging from 700 to 1000°C and over durations ranging from 1 to 4 hours. Vacuum (510-6 Torr) and forming gas (N2/H2=9) environment were selected to prevent sever oxidation. As the annealing temperature was higher than 800°C, the specimens were totally oxidized in the forming gas within one hour. However, ZrN still remained as the major phase in the films even annealing at 1000°C for 4hr in vacuum. The microstructure and composition also revealed different behaviors in two annealing atmosphere. The difference may be derived from the surface structure in different annealing environments. The surface oxide was non-protective in the forming gas so that the oxygen in the system can easily reacted with ZrN, and the volume expansion during oxidation would lead to the formation of blisters and cracks on the sample surface. Once cracks appeared on the surface, oxygen could penetrate through the oxide layer and react with ZrN and accelerate the oxidation rate; on the other hand, since the surface oxide was protective in vacuum, the diffusion of oxygen was hindered and remained an intact surface. Retained ZrN could be observed on the surface layer in stainless steel-based specimens even annealed at 800°C for 4hr after vacuum annealing. The ratios of corrosion area for all the oxidized ZrN films were less than 0.2% after 500hr salt spray test indicating an excellent corrosion resistance. Thus, by selecting a proper environment, ZrO2 can be grown from ZrN without peeling and crack formation, which may provide good corrosion protection. Moreover, the stress could be relieved without significant change in properties as the specimens were annealed at 1000°C for 1hr in vacuum.
[1] E. Ryshkewitz, D.W. Richardson, Oxide Ceramic : Physical Chemistry and Technology, Academic Press, 1985.
[2] S. Meriani, Zirconia'88, Advances in Zirconia Science and Technology, Elsevier Publishing Company, 1989.
[3] H. Li, K. Liang, L. Mei, S. Gu, S. Wang, "Oxidation protection of mild steel by zirconia sol-gel coatings", Mater. Lett., 51 (2001) 320.
[4] C. Piconi, G. Maccauro, "Zirconia as a ceramic biomaterial", Biomaterials, 20 (1999) 1.
[5] C. Piconi, G. Maccauro, L. Pilloni, W. Burger, F. Muratori, H. Richter, "On the fracture of a zirconia ball head", J. Mater. Sci.: Mater. Med., 17 (2006) 289.
[6] J.H. Huang, T.C. Lin, G.P. Yu, "Phase transition and mechanical properties of ZrNxOy thin films on AISI 304 stainless steel", Surf. Coat. Technol., 206 (2011) 107.
[7] J.H. Huang, Y.Y. Hu, G.P. Yu, "Structure evolution and mechanical properties of ZrNxOy thin film deposited on Si by magnetron sputtering", Surf. Coat. Technol., 205 (2011) 5093.
[8] J.H. Huang, K.H. Chang, G.P. Yu, "Synthesis and characterization of nanocrystalline ZrNxOy thin films on Si by ion plating", Surf. Coat. Technol., 201 (2007) 6404.
[9] J.H. Huang, C.H. Ho, G.P. Yu, "Effect of nitrogen flow rate on the structure and mechanical properties of ZrN thin films on Si(100) and stainless steel substrates", Materials Chemistry and Physics, 102 (2007) 31.
[10] J.H. Huang, Z.E. Tsai, G.P. Yu, "Mechanical properties and corrosion resistance of nanocrystalline ZrNxOy coatings on AISI 304 stainless steel by ion plating", Surf. Coat. Technol., 202 (2008) 4992.
[11] J.H. Huang, T.H. Wu, G.P. Yu, "Heat treatment induced phase separation and phase transformation of ZrNxOy thin films deposited by ion plating", Surf. Coat. Technol., 203 (2009) 3491.
[12] H.M. Tung, J.H. Huang, D.G. Tsai, C.F. Ai, G.P. Yu, "Hardness and residual stress in nanocrystalline ZrN films: Effect of bias voltage and heat treatment", Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 500 (2009) 104.
[13] K.C. Lan, J.H. Huang, C.F. Ai, G.P. Yu, "Structure and properties of nanocrystalline ZrNxOy thin films: Effect of the oxygen content and film thickness", J. Vac. Sci. Technol. A, 29 (2011).
[14] L. Krusinelbaum, M. Wittmer, "Oxidation-Kinetics of ZrN Thin-Films", Thin Solid Films, 107 (1983) 111.
[15] H.N. Al-Shareef, X. Chen, D.J. Lichtenwalner, A.I. Kingon, "Analysis of the oxidation kinetics and barrier layer properties of ZrN and Pt/Ru thin films for DRAM applications", Thin Solid Films, 280 (1996) 265.
[16] P. Panjan, B. Navinšek, A. Cvelbar, A. Zalar, I. Milošev, "Oxidation of TiN, ZrN, TiZrN, CrN, TiCrN and TiN/CrN multilayer hard coatings reactively sputtered at low temperature", Thin Solid Films, 281-282 (1996) 298.
[17] I. Milošev, H.H. Strehblow, B. Navinšek, "Comparison of TiN, ZrN and CrN hard nitride coatings: Electrochemical and thermal oxidation", Thin Solid Films, 303 (1997) 246.
[18] F.H. Lu, W.Z. Lo, "Degradation of ZrN films at high temperature under controlled atmosphere", J. Vac. Sci. Technol. A, 22 (2004) 2071.
[19] Y.C. Chieh, W.Z. Lo, F.H. Lu, "Microstructure evolution of ZrN films annealed in vacuum", Surf. Coat. Technol., 200 (2006) 3336.
[20] J.S. Jeng, S.H. Wang, J.S. Chen, "Effects of substrate bias and nitrogen flow ratio on the resistivity and crystal structure of reactively sputtered ZrNx films at elevated temperature", J. Vac. Sci. Technol. A, 25 (2007) 651.
[21] G. Reddy, J. Ramana, S. Kumar, V. Raju, "Investigations on the oxidation of zirconium nitride films in air by nuclear reaction analysis and backscattering spectrometry", Applied Surface Science, 253 (2007) 7230.
[22] J.S. Jeng, J.S. Chen, "Effects of substrate bias and nitrogen flow ratio on the surface morphology and binding state of reactively sputtered ZrNx films before and after annealing", Applied Surface Science, 255 (2009) 8263.
[23] R.A. Dugdale, "The application of the glow discharge to material processing", Journal of materials science, 1 (1966) 160.
[24] W.D. Sproul, "Very High-Rate Reactive Sputtering of TiN, ZrN and HfN", Thin Solid Films, 107 (1983) 141.
[25] H. Holleck, "Material Selection for Hard Coatings", Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 4 (1986) 2661.
[26] U.K. Wiiala, I.M. Penttinen, A.S. Korhonen, J. Aromaa, E. Ristolainen, "Improved Corrosion-Resistance of Physical Vapor-Deposition Coated TiN and ZrN", Surf. Coat. Technol., 41 (1990) 191.
[27] B. Navinsek, P. Panjan, I. Milosev, "Industrial applications of CrN (PVD) coatings, deposited at high and low temperatures", Surf. Coat. Technol., 97 (1997) 182.
[28] JCPDS PDF#350753
[29] JCPDS PDF#650961
[30] J.E. Hove, W.C. Riley, Modern Ceramic: Some Principles and Concepts, John Wiley, 1965, pp. 352.
[31] L.E. Toth, Transition Metal Carbides and Nitrides, Academic press, 1971, pp. 188.
[32] J.H. Huang, K.W. Lau, G.P. Yu, "Effect of nitrogen flow rate on structure and properties of nanocrystalline TiN thin films produced by unbalanced magnetron sputtering", Surface and Coatings Technology, 191 (2005) 17.
[33] E. Török, A.J. Perry, L. Chollet, W.D. Sproul, "Young's modulus of TiN, TiC, ZrN and HfN", Thin Solid Films, 153 (1987) 37.
[34] A.J. Perry, V. Valvoda, D. Rafaja, "X-ray residual stress measurement in TiN, ZrN and HfN films using the Seemann-Bohlin method", Thin Solid Films, 214 (1992) 169.
[35] A.J. Perry, "A contribution to the study of poisson's ratios and elasticconstants of TiN, ZrN and HfN", Thin Solid Films, 193-194 (1990) 463.
[36] P. Jin, S. Maruno, "Evaluation of Internal Stress in Reactively Sputter-Deposited ZrN Thin Films", Jpn. J. Appl. Phys., 30 (1991) 1463.
[37] E. Budke, J. Krempel-Hesse, H. Maidhof, H. Schüssler, "Decorative hard coatings with improved corrosion resistance", Surface and Coatings Technology, 112 (1999) 108.
[38] A. Hidaka, J. Nakamura, J. Sugimoto, "Influence of thermal properties of zirconia shroud on analysis of PHEBUS FPT0 bundle degradation test with ICARE2 code", Nucl. Eng. Des., 168 (1997) 361.
[39] F. Cernuschi, S. Ahmaniemi, P. Vuoristo, T. Mäntylä, "Modelling of thermal conductivity of porous materials: application to thick thermal barrier coatings", Journal of the European Ceramic Society, 24 (2004) 2657.
[40] S. Venkataraj, O. Kappertz, C. Liesch, R. Detemple, R. Jayavel, M. Wuttig, "Thermal stability of sputtered zirconium oxide films", Vacuum, 75 (2004) 7.
[41] R.F. Geller, P.J. Yavorsky, "Effect of Some Oxide Additions on Thermal-Length Changes of Zirconia", J. Research Natl. Bur. Stand., 35 (1945) 87.
[42] O.J. Whittemore, N.N. Ault, "Thermal Expansion of Various Ceramic Materials to 1500°C", J. Am. Ceram. Soc., 39 (1956) 443.
[43] B. Liang, C. Ding, "Thermal shock resistances of nanostructured and conventional zirconia coatings deposited by atmospheric plasma spraying", Surface and Coatings Technology, 197 (2005) 185.
[44] T.K. Yeh, Y.C. Chien, B.Y. Wang, C.H. Tsai, "Electrochemical characteristics of zirconium oxide treated Type 304 stainless steels of different surface oxide structures in high temperature water", Corros. Sci., 50 (2008) 2327.
[45] N.Q. Minh, "Ceramic Fuel Cells", J. Am. Ceram. Soc., 76 (1993) 563.
[46] X.J. Chen, K.A. Khor, S.H. Chan, L.G. Yu, "Influence of microstructure on the ionic conductivity of yttria-stabilized zirconia electrolyte", Mater. Sci. Eng., A, 335 (2002) 246.
[47] D. Lee, H. Choi, H. Sum, D. Choi, H. Hwang, M.J. Lee, S.A. Seo, I.K. Yoo, "Resistance switching of the nonstoichiometric zirconium oxide for nonvolatile memory applications", IEEE Elec. Dev. Lett., 26 (2005) 719.
[48] C.S. Hwang, H.J. Kima, "Deposition and characterization of ZrO2 thin films on silicon substrate by MOCVD", J. Mater. Res., 8 (1993) 1361.
[49] J. Zhu, T. L. Li, B. Pan, L. Zhou, Z. G. Liu, "Enhanced dielectric properties of ZrO2 thin films prepared in nitrogen ambient by pulsed laser deposition", Journal of Physics D: Applied Physics, 36 (2003) 389.
[50] H.J. Cho, Y.D. Kim, D.S. Park, E. Lee, C.H. Park, J.S. Jang, K.B. Lee, H.W. Kim, Y.J. Ki, I.K. Han, Y.W. Song, "New TIT capacitor with ZrO2/Al2O3/ZrO2 dielectrics for 60 nm and below DRAMs", Solid-State Electron., 51 (2007) 1529.
[51] Y.K. Park, S.H. Lee, J.W. Lee, J.Y. Lee, S.H. Han, E.C. Lee, S.Y. Kim, J. Han, J.H. Sung, Y.J. Cho, J.Y. Jun, D.J. Lee, K.H. Kim, D.K. Kim, S.C. Yang, B.Y. Song, Y.S. Sung, H.S. Byun, W.S. Yang, K.H. Lee, S.H. Park, C.S. Hwang, T.Y. Chung, W.S. Lee, "Fully Integrated 56 nm DRAM Technology for 1 Gb DRAM", VLSI Tech. Dig., 10B-4 (2007) 190.
[52] L. Chih-Yang, W. Chen-Yu, W. Chung-Yi, L. Tzyh-Cheang, Y. Fu-Liang, H. Chenming, T. Tseung-Yuen, "Effect of Top Electrode Material on Resistive Switching Properties of ZrO2 Film Memory Devices", IEEE Elec. Dev. Lett., 28 (2007) 366.
[53] W. Guan, S. Long, R. Jia, M. Liu, "Nonvolatile resistive switching memory utilizing gold nanocrystals embedded in zirconium oxide", Appl. Phys. Lett., 91 (2007) 062111.
[54] X. Wu, P. Zhou, J. Li, L. Y. Chen, H.B. Lv, Y.Y. Lin, T.A. Tang, "Reproducible unipolar resistance switching in stoichiometric ZrO2 films", Appl. Phys. Lett., 90 (2007) 183507.
[55] M. Copel, M. Gribelyuk, E. Gusev, "Structure and stability of ultrathin zirconium oxide layers on Si(001)", Appl. Phys. Lett., 76 (2000) 436.
[56] W.J. Qi, R. Nieh, B.H. Lee, L.G. Kang, Y. Jeon, J.C. Lee, "Electrical and reliability characteristics of ZrO2 deposited directly on Si for gate dielectric application", Appl. Phys. Lett., 77 (2000) 3269.
[57] J.P. Chang, Y.S. Lin, "Dielectric property and conduction mechanism of ultrathin zirconium oxide films", Appl. Phys. Lett., 79 (2001) 3666.
[58] T.S. Jeon, J.M. White, D.L. Kwong, "Thermal stability of ultrathin ZrO2 films prepared by chemical vapor deposition on Si(100)", Appl. Phys. Lett., 78 (2001) 368.
[59] S.W. Nam, J.H. Yoo, H.Y. Kim, S.K. Kang, D.H. Ko, C.W. Yang, H.J. Lee, M.H. Cho, J.H. Ku, "Study of ZrO2 thin films for gate oxide applications", J. Vac. Sci. Technol. A, 19 (2001) 1720.
[60] J. Abriata, J. Garcés, R. Versaci, "The O−Zr (Oxygen-Zirconium) system", J. Phase Equil., 7 (1986) 116.
[61] JCPDS PDF#73441
[62] JCPDS PDF#3652357
[63] JCPDS PDF#491642
[64] W.W. Davison, R.C. Buchanan, in: M.F. Yan (Ed.), Advances in Ceramics vol. 26, American Ceramic Society, Columbus , OH, 1989, pp. 513.
[65] M. Ghanashyam Krishna, K. Narasimha Rao, S. Mohan, "Structural and optical properties of zirconia thin films", Thin Solid Films, 193-194 (1990) 690.
[66] A. Emeline, G.V. Kataeva, A.S. Litke, A.V. Rudakova, V.K. Ryabchuk, N. Serpone, "Spectroscopic and Photoluminescence Studies of a Wide Band Gap Insulating Material: Powdered and Colloidal ZrO2 Sols", Langmuir, 14 (1998) 5011.
[67] S. Venkataraj, O. Kappertz, H. Weis, R. Drese, R. Jayavel, M. Wuttig, "Structural and optical properties of thin zirconium oxide films prepared by reactive direct current magnetron sputtering", J. Appl. Phys., 92 (2002) 3599.
[68] Z. W. Zhao, B. K. Tay, G.Q. Yu, S.P. Lau, "Optical properties of filtered cathodic vacuum arc-deposited zirconium oxide thin films", J. Phys.: Condens. Matter, 15 (2003) 7707.
[69] K. Maca, H. Hadraba, J. Cihlar, "Electrophoretic deposition of alumina and zirconia: I. Single-component systems", Ceram. Int., 30 (2004) 843.
[70] A.H. Heuer, M. Ruhle, in: N. Claussen, M. Ruhle, A.H. Heuer (Eds.), Advances in ceramics, Science and Technology of Zirconia II, vol. 12, American Ceramic Society, Columbus, OH, 1984.
[71] F.C. Nonamaker, Chem. Met. Eng., 31 (1924) 151.
[72] W. Mader, H.F. Fischmeister, E. Bergmann, "Defect Structure of Ion-Plated Titanium Nitride Coatings", Thin Solid Films, 182 (1989) 141.
[73] W.J. Chou, G.P. Yu, J.H. Huang, "Effect of heat treatment on the structure and properties of ion-plated TiN films", Surface and Coatings Technology, 168 (2003) 43.
[74] J.H. Huang, K.J. Yu, P. Sit, G.P. Yu, "Heat treatment of nanocrystalline TiN films deposited by unbalanced magnetron sputtering", Surface and Coatings Technology, 200 (2006) 4291.
[75] L. Cunha, F. Vaz, C. Moura, L. Rebouta, P. Carvalho, E. Alves, A. Cavaleiro, P. Goudeau, J.P. Rivière, "Structural evolution in ZrNxOy thin films as a function of temperature", Surface and Coatings Technology, 200 (2006) 2917.
[76] C.Y. Yeh, "Effect of Heat Treatment under Controlled Atmosphere on the Properties of ZrN Film Deposited by HCD ion plate", Master Thesis, National Tsing Hua University, R.O.C., 2008.
[77] T. Okamoto, M. Fushima, K. Takizawa, Corros. Eng., 45 (1996) 425.
[78] H. Uchida, S. Inoue, K. Koterazawa, "Electrochemical evaluation of pinhole defects in TiN films prepared by r.f. reactive sputtering", Mater. Sci. Eng., A, 234-236 (1997) 649.
[79] W.L. Pan, G.P. Yu, J.H. Huang, "Mechanical properties of ion-plated TiN films on AISI D2 steel", Surface and Coatings Technology, 110 (1998) 111.
[80] B.F. Chen, W.L. Pan, G.P. Yu, J. Hwang, J.H. Huang, "On the corrosion behavior of TiN-coated AISI D2 steel", Surface and Coatings Technology, 111 (1999) 16.
[81] J.-Y. Chen, G.-P. Yu, J.-H. Huang, "Corrosion behavior and adhesion of ion-plated TiN films on AISI 304 steel", Materials Chemistry and Physics, 65 (2000) 310.
[82] J.H. Huang, F.Y. Ouyang, G.P. Yu, "Effect of film thickness and Ti interlayer on the structure and properties of nanocrystalline TiN thin films on AISI D2 steel", Surface and Coatings Technology, 201 (2007) 7043.
[83] J.H. Huang, Z.E. Tsai, G.P. Yu, "Mechanical properties and corrosion resistance of nanocrystalline ZrNxOy coatings on AISI 304 stainless steel by ion plating", Surface and Coatings Technology, 202 (2008) 4992.
[84] W.J. Chou, G.P. Yu, J.H. Huang, "Corrosion behavior of TiN-coated 304 stainless steel", Corros. Sci., 43 (2001) 2023.
[85] Y. Ding, D.O. Northwood, "Tem study of the oxide-metal interface formed during corrosion of Zr-2.5wt.%Nb pressure tubing", Mater. Charact., 30 (1993) 13.
[86] J.H. Baek, Y.H. Jeong, I.S. Kim, "Effects of the accumulated annealing parameter on the corrosion characteristics of a Zr-0.5Nb-1.0Sn-0.5Fe-0.25Cr alloy", J. Nucl. Mater., 280 (2000) 235.
[87] W. Qin, C. Nam, H.L. Li, J.A. Szpunar, "Tetragonal phase stability in ZrO2 film formed on zirconium alloys and its effects on corrosion resistance", Acta Materialia, 55 (2007) 1695.
[88] E. Ariza, L.A. Rocha, F. Vaz, L. Cunha, S.C. Ferreira, P. Carvalho, L. Rebouta, E. Alves, P. Goudeau, J.P. Rivière, "Corrosion resistance of ZrNxOy thin films obtained by rf reactive magnetron sputtering", Thin Solid Films, 469-470 (2004) 274.
[89] P. Scherrer, Gött. Nachr., 2 (1918) 98.
[90] JCPDS PDF#899069
[91] JCPDS PDF#350753
[92] L.V. Azaroff, M.J. Buerger, The powder method in X-ray crystallography McGraw-Hill 1958, pp. 233.
[93] JCPDS PDF#830944
[94] G.G. Stoney, "The tension of metallic films deposited by electrolysis", Proc. R. Soc. Lond. A, 82 (1909) 172.
[95] Physical properties of Silicon (Si). Ioffe Institute Database. Retrieved on 2011-05-27.
[96] C.H. Ma, J.H. Huang, H. Chen, "Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction", Thin Solid Films, 418 (2002) 73.
[97] ASM, Metal Handbook, 13, ASM International, 1988, pp. 212.
[98] A. standards, ASTM, West Conshohocken, PA, 1996.
[99] CIE, Tech. Rept., vol. Tech. Rept., Bureau Central de la CIE, 1971, p. 1.
[100] CIE, Tech. Rept., vol. Tech. Rept., Bureau Central de la CIE, 1978.
[101] ASTM, Symposium on Color, American Society for Testing Materials, 1941, pp. 3.
[102] R. A, Vacuum technology, North–Holland, 1990.
[103] O. M, The materials science of thin films, Academic, 1992, pp. 61.
[104] P. Cotterill, P.R. Mould, Recrystallization and grain growth in metals, Wiley, 1976, pp. 324-325.
[105] U. Brossmann, R. Würschum, U. Södervall, H.E. Schaefer, "Oxygen diffusion in ultrafine grained monoclinic ZrO2", J. Appl. Phys., 85 (1999) 7646.
[106] A. Madeyski, W.W. Smeltzer, "Oxygen Diffusion in Monoclinic Zirconia", Mater. Res. Bull., 3 (1968) 369.
[107] F.J. Keneshea, D.L. Douglass, "Diffusion of Oxygen in Zirconia as a Function of Oxygen Pressure", Oxidation of Metals, 3 (1971) 1.