簡易檢索 / 詳目顯示

研究生: 張新安
Hsin-An Chang
論文名稱: 應用於光學切換器之微型雙穩態機構設計
Design of a Bistable Compliant Micro-Mechanism Applied to Optical Switch
指導教授: 宋震國 教授
Prof. Cheng-Kuo Sung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2001
畢業學年度: 89
語文別: 英文
論文頁數: 76
中文關鍵詞: 雙穩態微撓性機構光學切換器
外文關鍵詞: Bistable, Compliant Micro-Mechansim, Optcial Switch
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,將設計一組完全撓性機構使其具有雙穩態的效果,此機構可同時具有撓性機構與雙穩態元件的優點。本論文提出雙穩態撓性機構的設計方法,經由運動分析、應變能分析以及應力分析,透過參數設計與電腦模擬,設計一組雙穩態撓性機構。
    除設計撓性機構外,本論文也提出雙穩態撓性機構的應用,包括微繼電器(Micro relay)、雙穩態進給元件(Bistable feeding device)與微光學切換器(Micro optical switch)。其中,微繼電器是用於切換電流是否導通;雙穩態進給元件是透過與黃建誌同學的合作,利用抓爬式致動器(SDA)驅動雙穩態撓性機構;微光學切換器則結合了雙穩態進給元件與Lin等人設計的光學切換器。

    本論文設計的所有元件都是利用MUMPsTM製作完成。透過實驗測試與觀察,了解雙穩態撓性機構與雙穩態進給元件的功能與原先預期的結果很類似。


    This thesis proposes the design method for fully compliant bistable micro mechanisms. This class of mechanisms is constructed completely by elastic hinges and has two stationary locations. Therefore, it may possess the advantages of both the compliant mechanism and the bistable device because it can avoid the drawbacks caused by rigid joints and require no external power to keep it in position except switching between the two stable positions. Under the constraint of overstress resulted failure, the total strain energy of the bistable compliant mechanism is derived by summing up the strain energy stored in each elastic member.
    In addition, this thesis also proposes several applications that contain bistable compliant micro mechanisms, including a micro relay, a bistable feeding device and an improved optical switch. Among them, the micro relay is designed for conducting the current; the bistable feeding device is composed of a bistable compliant mechanism and an electrostatic actuator named SDA (Scratch drive actuator) through the cooperation with my partner, C. C. Huang; and the optical switch, designed for the optical networks, integrates with the bistable compliant micro mechanism with the structure proposed by Lin et. al.

    The micro devices are implemented by a surface-micromachining process with three layers of polysilicon, known as MUMPsTM. In addition, an experimental setup is constructed to test the individual micro devices in order to demonstrate the ideas proposed in this research. From the experimental results, the compliant bistable micro mechanism and the bistable feeding device operate similarly as expected.

    CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Literature review 3 1.2.1 Bistable micro-devices 3 1.2.2 Compliant mechanism 6 1.3 Contents of this research 7 CHAPTER 2 THEORY AND DESIGN OF BISTABLE COMPLIANT MECHANISMS 10 2.1 Theory and formulation of the bistable compliant mechanism 10 2.1.1 Physical model of the bistable compliant mechanism 10 2.1.2 Analysis of motion 12 2.1.3 Analysis of strain energy 13 2.1.4 Analysis of stress 15 2.2 Design of the bistable compliant mechanism 19 CHAPTER 3 DESIGN AND FABRICATION OF MICRO DEVICES WITH BISTABLE FUNCTION 25 3.1 Introduction to MUMPs™ process 25 3.2 Applications of the bistable compliant mechanism 34 3.2.1 Micro relay 34 3.2.2 Bistable feeding device 35 3.2.3 Optical switch 37 3.3 Fabrication of the micro devices 40 3.3.1 Fabrication using MUMPs™ process 41 3.3.2 Post-process 47 CHAPTER 4 EXPERIMENTS ON DEVICES WITH BISTABLE FUNCTION 49 4.1 Experimental instruments 49 4.2 Experiments on the bistable compliant mechanism 52 4.2.1 Experimental method 52 4.2.2 Experimental results 53 4.2.3 Discussion 55 4.3 Experiments on the micro relay 56 4.3.1 Experimental method 57 4.3.2 Experimental results 57 4.3.3 Discussion 57 4.4 Experiments on the bistable feeding device 58 4.4.1 Experimental method 59 4.4.2 Experimental results 59 4.4.3 Discussion 61 4.5 Experiments on the optical switch 64 4.5.1 Experimental method 64 4.5.2 Experimental results 65 4.5.3 Discussion 66 CHAPTER 5 CONCLUSIONS AND FUTURE WORK 67 5.1 Conclusions 67 5.2 Future work 68

    1. Ikuta, K., Maruo, S. and Kojima, S., 1998, “New Micro Stereo Lithography for Freely Movable 3D Micro Structure,” Micro Electro Mechanical Systems, Proceedings of MEMS 98, pp. 290-295.
    2. Jensen, B. D., Howell, L. L. and Salmon, L. G., 1999, “Design of Two-Link, In-Plane, Bistable Compliant Mechanism,” ASME Journal of Mechanical Design, Vol. 121, No. 3, pp. 416-423.
    3. Hayashi, T., 1999, “Research and Development of Micromechanisms,” Proceedings of Tenth World Congress on the Theory of Machine and Mechanisms, pp. 18-23.
    4. Ananthansuresh, G. K. and Kota, S., Nov. 1995, “Designing Compliant Mechanisms,” Mechanical Engineering, pp. 93-96.
    5. Erdman, A. G., 1993, Modern Kinematics – Developments in the Last Forty Years, John Wiley and Sons.
    6. Web Site : www-personal.engine.umich.edu/~Kota/mems.html
    7. Halg, B., 1990, “On a Nonvolatile Memory Cell Based on Micro-electro-mechanics,” Proceedings IEEE Workshop on MEMS, pp. 172-176.
    8. Vangbo, M. and Backlund, Y., 1998, “A Lateral Symmetrically Bistable Buckled Beam,” Journal of Micromechanics and Microengineering, Vol. 8, pp. 29-32.
    9. Matoba, H., Ishikawa, T., Kim, C. J. and Muller, R. S., 1994, “A Bistable Snapping Microactuator,” Proc. IEEE Micro Electro Mechanical Systems Workshop, Oiso, Japan, pp. 45-50.
    10. Parkinson, M. B., Jensen, B. D. and Roach, G. M., 2000, “Optimization-Based Design of a Fully-Compliant Bistable Micromechanism,” ASME Proceedings of Design Engineering Technical Conferences and Computer Information in Engineering Conference, DETC2000/MECH-14119.
    11. Sun, X., Farmer, K. R. and Carr, M. N., 1998, “A Bistable Microrelay Based on Two-segment Multimorph Cantilever Actuators,” Proceedings IEEE Workshop on MEMS, pp. 154-159.
    12. Ananthasuresh, G. K., Kota, S. and Kikuchi, N., 1994, “Strategies for Systematic Synthesis of Compliant MEMS,” Dynamic Systems and Control, ASME DSC 55-2, Vol. 2, pp. 677-686.
    13. Burns, R. H., 1964, The Kinetostatic Synthesis of Flexible Link Mechanism, Ph.D. Dissertation, Yale University, New Haven, CT.
    14. Beker, E. B., Carey, G. F. and Oden, J. T., 1981, Finite Elements – an Introduction, Vol.1, The Southeast Book Company.
    15. Burnett, D. S., 1988, Finite Element Analysis – from Concepts to Applications, Addison-Wesley Publishing Company.
    16. Bendat, J. S. and Piersol, A. G., 1991, Random Data Analysis and Measurement Procedures, John Wiley & Sons.
    17. Burns, R. H. and Crossley, F. R. E., 1996, Structural Permutations of Flexible Link Mechanisms, ASME Paper No. 66-MECH-5.
    18. Her, I. and Midha, A., 1987, “A Compliance Number Concept for Compliant Mechanisms, and Type Synthesis,” ASME Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 109, pp. 348-355.
    19. Howell, L. L. and Midha, A., 1994, “A Method for the Design of Compliant Mechanisms with Small-Length Flexural Pivots,” ASME Journal of Mechanical Design, Vol. 116, pp. 280-290.
    20. Her, I. and Chang, J. C., 1994, “A Linear Scheme for the Displacement Analysis of Micropositioning Stages with Flexure Hinges,” ASME Journal of Mechanical Design, Vol. 116, pp. 770-776.
    21. Hattori, T., 1997, “Achievements of Japanese Micromachine Projects,” TRANSDUCERS’97, International Conference on Solid-State Sensors and Actuators, Chicago, pp. 25-28.
    22. Sevak, N. M. and McLarnan, C. W., 1974, “Optimal Synthesis of Flexible Link Mechanisms with Large Static Deflections,” ASME Paper No. 74-DET-83.
    23. Chu, P. B. and Pister, S. J.,1994, “Analysis of Closed-Loop Control of Parallel-Plate Electrostatic Microgrippers,” Robotics and Automation, Proceedings of 1994 IEEE International Conference, Vol. 1, pp. 820-825.
    24. Suzuki, K., Shimoyama, I. and Miura, H., 1994, “Insect-Model Based Microrobot with Elastic Hinges,” Journal of Microelectromechanical Systems, Vol. 3, No. 1, Sep., pp. 4-9.
    25. Goldfarvb, M. and Speich, J. E., 1999, “A Well-Behaved Revolute Flexure Joint for Compliant Mechanism Design,” Journal of Mechanical Engineering, Vol.121, Sep., pp. 424-429.
    26. Muglitz, J. and Schonherr, J., 1999, “Miniaturized Mechanisms – Joint Design, Modeling, Example,” Proceedings of Tenth World Congress on the Theory of Machine and Mechanisms, pp. 848-855.
    27. Ebefors, T., Kalvesten, E. and Stemme, G., 1998, “Three Dimensional Silicon Triple-Hot-Wire Anemometer Based on Polyimide Joints,” Micro Electro Mechanical Systems, pp.93-98.
    28. Ebefors, T., Ulfstedt, J., Kalvesten, E. and Stemme, G., 1999, “A Walking Silicon Micro-Robot,” TRANSDECERS’99, International Conference on Solid-State Sensors and Actuators.
    29. Borner, M. W., Kohl, M., Pantenburg, F. J., Bacher, W., Hein, H. and Schomburg, W. K., 1996, “Sub-Micron LIGA Process for Movable Microstructures,” Microelectronic Engineering, Vol. 30, pp. 505-508.
    30. Leipholz, H., 1987, Stability Theory, 2nd Ed., John Wiley & Sons.
    31. Beer, F. P. and Johnston, Jr., E. R., Mechanics of Materials, McGraw Hill, 1992.
    32. Roresi, A. P., Schmidt, R. J. and Sidebottom, O. M., 1993, Advanced Mechanics of Materials, John Wiley & Sons.
    33. Shigley, J. E. and Mischke, C. R., 1989, Mechanical Engineering Design, 5th Ed., McGraw Hill.
    34. Biebl, M., and Philipsborn, H., 1995, “Fracture Strength of Doped and Undoped Polysilicon,” TRANSDUCERS’ 95, International Conference on Solid-State Sensors and Actuators.
    35. MUMPs™ Design Handbook, Web Site: www.memsrus.com/cronos/CIMSmain2ie.html
    36. Akiyama, T., Collard, D. and Fujita, H., 1997, “Scratch Drive Actuator with Mechanical Links for Self-Assembly of Three-Dimensional MEMS,” Journal of Microelectromechanical Systems, Vol. 6, No. 1.
    37. Lin, L. Y., Goldstein, E. L. and Tkach, R. W., 1999, “Free-Space Micromachined Optical Switches for Optical Networking,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 5, No. 1, pp. 4-9.
    38. Technology Review, July/August, 2000.
    39. Kim, J. Y. and Kim, C. J., 1997, “Comparative Study of Various Release Methods for Polysilicon Surface Micromaching”, IEEE Micro Electro Mechanical Systems Workshop, Nagoya, Japan, Jan. 1997,pp. 197-202.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE