研究生: |
林資翰 Lin,Zih Han |
---|---|
論文名稱: |
以穩健最佳化分析電力收購之太陽能裝置容量問題 -以台灣企業為例 A Robust Optimization Approach to Solar Power Installation Capacity under Feed-in Tariff Policy: A Case of Taiwan Enterprises |
指導教授: |
王小璠
Wang, Hsiao Fan |
口試委員: |
巫木誠
Wu, Muh Cherng 張國浩 Chang, Kuo Hao |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 50 |
中文關鍵詞: | Robust-COIM 、收購電價 、穩健最佳化 、太陽光電系統 、風險偏好 |
外文關鍵詞: | Robust-COIM, Feed-in Tariff, Robust Optimization, Solar Photovoltaic System, Risk Preference |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
基於永續社會的發展,再生能源的發展已經是各國所關注的議題。許多國家皆提出再生能源發展政策以推廣及提升再生能源的普及。其中,太陽能是一個極具發展潛力的再生能源。藉由再生能源收購政策(FIT),政府對欲裝置太陽能光電系統的民眾進行補助,並透過收購契約的簽訂,保證以高於電力市場的收購價格進行電力收購。對於民眾而言,此太陽能光電系統不但成為一個具有報酬價值的投資規畫,更是具有減少碳排放的環保效益。因此,本研究的目的是幫助太陽能光電系統的投資者評估此投資可能的報酬及風險。而為了達成經濟及環境的助益,本研究將提出確定性的約束最佳化裝置模型(COIM),在政府給定的收購條件下,幫助投資人決定最佳的太陽能裝置容量。
為了找到影響投資效益的重要因子,本研究對太陽能投資的相關參數進行敏感度分析,參數則包含了裝置成本、維護成本、發電量及折現率等等。由於太陽能的發電量具高度的不確定性,因此本研究考慮此不確定因素,從確定性模式延伸至不確定性模式,延伸為穩健性之約束最佳化裝置模型(ROBUST-COIM),應用穩健最佳化提供投資人更穩健的投資規畫。此穩健最佳化模型已應用於台灣的某私人企業進行模式的驗證及分析,並能依照不同決策者的風險偏好給予不同的投資建議。研究結果顯示不同風險偏好的投資人,其最佳裝置容量也有所不同。藉由淨現值、投資報酬率及回收期等評估指標,本研究為私人企業提供一個穩健的太陽能投資裝置容量,最大化此裝置投資效益。
Solar power is a renewable energy that has a potential for development. The government of Taiwan has implemented a policy to subsidize individuals installing solar photovoltaic (PV) systems through financial assistance and buy-back assurance (e.g., the feed-in tariff scheme). Installing solar PV systems is considered economical because it enables people to make profit. In addition, using such system has environmental benefits because it reduces carbon emissions. This study aims to assist installers evaluate the profitability and potential risks of this long-term investment. A deterministic model called constraint optimal installation model (COIM) is primarily proposed to determine the optimal installation capacity under a given guaranteed price for a specific time period.
Sensitivity analysis is conducted on parameters such that the most critical factors affecting profitability can be identified. Based on these factors, an extension to a robust optimization model, namely, Robust–COIM, has been developed to evaluate potential risks and uncertainties such that a robust investment will be provided. The robust model has been applied to an enterprise in Taiwan. Furthermore, two types of risk preference of decision makers are analyzed and compared to each other. Results have shown that the proposed model is able to recommend a robust installation capacity subject to the risk preference of a decision maker.
1. Couture, T., and Gagnon, Y. (2010). An analysis of feed-in tariff remuneration models: Implications for renewable energy investment. Energy policy, 38(2), 955-965.
2. Dusonchet, L., and Telaretti, E. (2010). Economic analysis of different supporting policies for the production of electrical energy by solar photovoltaics in western European Union countries. Energy Policy, 38(7), 3297-3308.
3. Elhodeiby, A. S., Metwally, H. M. B., and Farahat, M. A. (2011). Performance Analysis of 3.6 KW Rooftop Grid Connected Photovoltaic System in Egypt. In International Conference on Energy Systems and Technologies (ICEST 2011), Cairo, Egypt (pp. 11-14).
4. Huang, Y. H., and Wu, J. H. (2007). Technological system and renewable energy policy: a case study of solar photovoltaic in Taiwan. Renewable and Sustainable Energy Reviews, 11(2), 345-356.
5. Huang, Y. H., and Wu, J. H. (2011). Assessment of the feed-in tariff mechanism for renewable energies in Taiwan. Energy Policy, 39(12), 8106-8115.
6. Huenteler, J., Schmidt, T. S., and Kanie, N. (2012). Japan's post-Fukushima challenge–implications from the German experience on renewable energy policy. Energy Policy, 45, 6-11.
7. Jacobsson, S., and Lauber, V. (2006). The politics and policy of energy system transformation—explaining the German diffusion of renewable energy technology. Energy policy, 34(3), 256-276.
8. Klein, A., Held, A., Ragwitz, M., Resch, G., and Faber, T. (2007). Evaluation of different feed-in tariff design options: Best practice paper for the International Feed-in Cooperation. Karlsruhe, Germany and Laxenburg, Austria: Fraunhofer Institut für Systemtechnik und Innovationsforschung and Vienna University of Technology Energy Economics Group.
9. Lee, S. C., and Shih, L. H. (2011). Enhancing renewable and sustainable energy development based on an options-based policy evaluation framework: case study of wind energy technology in Taiwan. Renewable and Sustainable Energy Reviews, 15(5), 2185-2198.
10. Lesser, J. A., and Su, X. (2008). Design of an economically efficient feed-in tariff structure for renewable energy development. Energy Policy, 36(3), 981-990.
11. Marion, B., Adelstein, J., Boyle, K., Hayden, H., Hammond, B., Fletcher, T and Rich, G. (2005). Performance parameters for grid-connected PV systems. In Photovoltaic Specialists Conference, 2005. Conference Record of the Thirty-first IEEE, Lake Buena Vista, FL, USA, 1601-1606).
12. Marler, R. T., and Arora, J. S. (2010). The weighted sum method for multi-objective optimization: new insights. Structural and multidisciplinary optimization, 41(6), 853-862.
13. Malcolm, S. A., and Zenios, S. A. (1994). Robust optimization for power systems capacity expansion under uncertainty. Journal of the operational research society, 1040-1049.
14. Mulvey, J. M., Vanderbei, R. J., and Zenios, S. A. (1995). Robust optimization of large-scale systems. Operations research, 43(2), 264-281.
15. Menanteau, P., Finon, D., and Lamy, M. L. (2003). Prices versus quantities: choosing policies for promoting the development of renewable energy. Energy policy, 31(8), 799-812.
16. Rigter, J., and Vidican, G. (2010). Cost and optimal feed-in tariff for small scale photovoltaic systems in China. Energy Policy, 38(11), 6989-7000.
17. Rowlands, I. (2005) Envisaging feed-in tariffs for solar photovoltaic electricity: European lessons for Canada. Renewable and Sustainable Energy Review 9, 51–68.
18. Saaty, T. L. (1990). How to make a decision: the analytic hierarchy process. European journal of operational research, 48(1), 9-26.
19. Takahama, T., and Sakai, S. (2005). Constrained optimization by ε constrained particle swarm optimizer with ε-level control. In Soft Computing as Transdisciplinary Science and Technology (pp. 1019-1029). Springer Berlin Heidelberg.
20. Wang, H. F., and Huang, Y. S. (2013). A two-stage robust programming approach to demand-driven disassembly planning for a closed-loop supply chain system. International Journal of Production Research, 51(8), 2414-2432.
21. Wu, J. H., and Huang, Y. H. (2006). Renewable energy perspectives and support mechanisms in Taiwan. Renewable Energy, 31(11), 1718-1732.
22. Bureau of Energy, Ministry of Economic Affairs (BOEMOEA), 2014. Taiwan, Program of Millions Rooftop PVs https://mrpv.org.tw/
23. Central Weather Bureau (CWB), Taiwan, 2014. Sunlight Hours in Taiwan, < http://stat.motc.gov.tw/mocdb/stmain.jsp?sys=100&funid=a8101>
24. NASA Surface meteorology and Solar Energy: RETScreen Data, 2015. <https://eosweb.larc.nasa.gov/sse/>
25. SEMI, 2014. Research Report <http://www.semi.org/ch/MarketInfo/ctr_031895>