簡易檢索 / 詳目顯示

研究生: 謝維仁
Wei-Jen Hsieh
論文名稱: 以過濾式陰極電弧電漿系統合成非晶質碳膜與摻雜元素對結構與物理特性影響之研究
Extrinsic atom doping effects on the structures and physical properties of amorphous carbon film synthesized by filtered cathodic arc plasma system
指導教授: 施漢章
Han-C. Shih
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 94
語文別: 英文
論文頁數: 118
中文關鍵詞: 非晶質碳膜非晶質碳氮膜非晶質碳氮硼膜非晶質碳氟膜對苯二甲酸乙二酯陰極發光
外文關鍵詞: a-C, a-C:N, a-C:N:B, a-C:F, polyethylene terephthalate, cathodoluminescence
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是使用過濾式陰極電弧電漿沉積法合成非晶質碳材薄膜,並在碳材中摻雜不同的元素,如:氮、硼及氟等原子。主要合成出四種材料:非晶質碳膜(a-C)、非晶質碳氮膜(a-C:N)、非晶質碳氮硼膜(a-C:N:B)、非晶質碳氟膜(a-C:F),並探討其微結構變化、機械性質、電性及光學性質。
    在非晶質碳氮膜裡,發現存在有奈米尺寸的鑽石顆粒,其存在可提升非晶質碳氮薄膜的機械強度,亦會影響材料本身的光學特性。在非晶質碳氮膜中摻雜硼元素形成非晶質碳氮硼膜,對電子場發射特性有一定的影響,影響原因有三項:分別為石墨化程度、表面粗糙度和摻雜原子效應。
    在本研究中,基板的選擇不只有矽晶片亦選用對苯二甲酸乙二酯 (polyethylene terephthalate, PET) 材料,為一可繞曲的高分子基板,成功地在PET上成長a-C:F薄膜,藉調變實驗參數,可控制非晶質碳氟薄膜的表現型態,可形成奈米尺寸的非晶質碳氟顆粒球,其為蝕刻速率與沉積速率兩者競爭達平衡的結果。
    本論文的另一重點是利用陰極發光技術分析非晶質碳材的光學性質,發現在非晶質碳氮膜可發出藍光(~2.67 eV)和紅光(~1.91 eV),但非晶質碳膜只發出紅光(~2.04 eV),而在非晶質碳氮膜裡摻雜硼原子形成a-C:N:B膜只發出藍光(~2.67 eV)。非晶質碳氟膜發出不同頻率的光(2.03和1.97 eV),而非晶質碳氟奈米顆粒(a-C:F nano-particles)膜可發出2.10、2.03和1.97 eV的光譜,主要是由π鍵基態至π鍵激發態能階的跳躍、外來元素的摻雜與缺陷能階所造成。


    Carbon based materials were synthesized by using the filter cathodic arc plasma system, and extrinsic atoms, e.g. nitrogen, boron and fluorine elements were doped into the thin films in this study. Four types of carbon-related films were studied, they are: amorphous carbon (a-C), amorphous carbon nitride (a-C:N), boron doped amorphous carbon nitride (a-C:N:B) and fluorine doped amorphous carbon (a-C:F); their mechanical, electronic, optical properties and micro-structures are thoroughly discussed.
    Nano-crystalline diamond clusters were found to be embedded in the a-C:N film, which enhance the mechanical strength and affect the optical properties. Boron doped a-C:N (a-C:N:B) films affect the electrical field emission due to the degree of graphitization, surface morphology and acceptor effects.
    Not only Si wafer but also polyethylene terephthalate (PET), which is flexible, were applied as the substrates upon which a-C:F films were successfully deposited. The transform of the surface morphology of the a-C:F film to the a-C:F nano-particles film by optimizing the parameters and by discussing the growth mechanism and optical properties.
    The result of cathodoluminescence measurements indicated that the a-C:N films produce the blue (~2.67 eV) and red light (~1.91 eV) while the boron doped a-C:N (a-C:N:B) films and the a-C films only generate the respective blue (~2.67 eV) and red light (~2.04 eV). The most prominent cathodoluminescence of the a-C:F films is the orange light (~2.03 eV) and red light (~1.97 eV), but the a-C:F nano-particles film exhibits several luminescences at 2.10, 2.03 and 1.97 eV. These luminescences are main due to the π-π* transition, extrinsic atom doping and the defect energy level.

    Abstract (in Chinese)..………………………………………………….....I Abstract (in English)…………………………………….………………III Acknowledgements (in Chinese)………………………………………...V Contents………………………………………………………………..VII Table lists………………………………………………………………..XI Figure captions…………………………………………………………XII Chapter 1 Introduction……………………………………….…...………1 1.1 Motivation………………………………….……..……..………1 1.2 Overview……………………………………..….….…….……..2 1.3 Form of carbon………………………..….………….….……….3 1.3.1 Diamond………………..……………………….………..3 1.3.2 Graphite…………………………………..………………3 1.3.3 Amorphous carbon………………..………….……...…...5 1.4 Cathodic arc plasma……………………………………....….….7 1.4.1 Principle………………………….……….………….…..7 1.4.2 Vacuum Arc………………………..…….……………...10 1.4.3 Arc Sources……………………………….……..……...10 1.4.4 Additional magnet behind targets……………………....11 1.4.5 Macro-particles…………………………………...….…12 1.4.6 Macro-particle filter…………………..………….…..…12 Chapter 2 Instrumentation and characterization….……………………..15 2.1 Deposition system- Filtered cathodic arc plasma deposition (FCAP)………………………………………………………..15 2.2 Overview of the experiment procedures…..…………...……....17 2.3 Characterization…………………………….……….….……...19 2.3.1 Atomic Force Microscope (AFM)………..….……...…..19 2.3.2 Field emission scanning electron microscopy (FESEM)………………………………………………...19 2.3.3 High-resolution transmission electron microscopy (TEM).…………………………………………………...19 2.3.4 X-ray diffraction…..………………………….………....19 2.3.5 Raman spectroscopy……………………..……….……..20 2.3.6 Fourier transform infrared spectroscopy (FTIR)……......20 2.3.7 X-ray photoelectron spectroscopy (XPS)……..…….…..21 2.3.8 Optical emission spectroscopy (OES)………..………....21 2.3.9 Electron field emission measurement………….……….22 2.3.10 Nano-indentation…………….………………………...22 2.3.11 Cathodoluminescence (CL)…………………………....23 Chapter 3 Characterization and formation of nano diamonds in a-C:N films………………….……………………………...………24 3.1 Synthesis of nano diamonds embedded in a-C:N films………..24 3.2 Microstructures………………………………………………...25 3.3 Mechanical property……………………….…………………..38 Chapter 4 Cathodoluminescence of a-C:N films………………….....….40 4.1 Introduction……………………………..……………………...40 4.2 Synthesis of a-C:N films……...……….……………………….41 4.3 Cathodoluminescence measurement……...……………………43 4.4 Microstructures…………………………….…………………..46 Chapter 5 The relation between structure and optical property of a-C:N films…………………………………………..……………..53 Chapter 6 Cathodoluminescence and electron field emission of boron-doped a-C:N films……………………..……….……60 6.1 Synthesis of boron-doped a-C:N films…….………..…………60 6.2 Microstructures……………………………………….………..61 6.3 Cathodoluminescence measurement………….…….………….70 6.4 Field emission measurement……………………..…………….72 Chapter 7 Cathodoluminescence of fluorine doped amorphous carbon nanoparticles.………………...…………………..……..…79 7.1 Introduction………………………........……………….………79 7.2 Synthesis of fluorine doped amorphous carbon nanoparticles...80 7.3 Microstructures…………………………………….…………..80 7.4 Cathodoluminescence measurement…………..……………….90 Chapter 8 Summary………………………………………....…………..93 References…………………………………………………...……….…96 Publications……………………………………………………….……111 Vita (in Chinese)…………...…………………………………………..117 Table lists Table I Values of D-band and G-band’s the position, FWHM, the ratio (ID/IG) and N/C atomic ratio for various nitrogen flows…………50 Table II Values of the Eto, Eth, resistivity (ρ), ID/IG and Rrms of the a-C:N and a-C:N:B films………………………………………………..78 Figure Captions Fig. 1.1 (a) Diamond structure (b) Graphite structure……………………4 Fig. 1.2 The scheme of the radicals excited by the vacuum arc.…………9 Fig. 1.3 Different types of filters (a) 90□-bend filter (b) S-bend filter….14 Fig. 2.1 The scheme of the cathodic arc filter…………………………..16 Fig. 2.2 The FCAP system in our laboratory…………………………....16 Fig. 2.3 The experiment procedures……………………………….……18 Fig. 3.1 (a) SEM fracture cross-section image of the a-C:N film on silicon (b) SEM surface morphology of the a-C:N film on silicon…...…26 Fig. 3.2 XPS survey scan spectra of the a-C:N film on silicon with (a) as-deposited specimens and (b) 15 sec sputter cleaned by Ar+………………………………………………………………..28 Fig. 3.3 Deconvolution of (a) N (1s) core-level peak of a-C:N films on silicon, and (b) C (1s) core-level peak of a-C:N films on silicon.……………………………………………………………29 Fig. 3.4 XPS survey scan spectra for the film at various negative dc pulsed bias (a) -150, (b) -350 and (c) -650 V………………..…...30 Fig. 3.5 The Raman spectrum of the a-C:N film at (a) 0, (b) -150, (c) -250, (d) -350, (e) -450 and (f) -650 V pulsed substrate bias voltages....32 Fig. 3.6 Variation of the ID/IG as a function of substrate bias voltage…...33 Fig. 3.7 FTIR spectra of the a-C:N films synthesized at (a) -100, (b) -350 and (c) -650 V pulsed substrate bias voltages……………….…...35 Fig. 3.8 MAC glancing incident X-ray pattern of the a-C:N film on silicon………………………………………………………....37 Fig. 3.9 Selected area diffraction (SAD) pattern showing nanocrystalline diamond structures in the a-C:N film and bright-field image of nanocrystalline diamond in the a-C:N film…………………...37 Fig. 3.10 Nanohardness measurements of the a-C:N film at (a) 0, (b) -250, (c) -350, (d) -450 and (e) -650 V of negative pulsed substrate bias voltages…………………………………..…….39 Fig. 3.11 Variation of the hardness as a function of substrate bias voltage…………………………………………………….…..39 Fig. 4.1 OES for the various N2 flows in the FCAP system…………….42 Fig. 4.2 CL spectra of a-C:N films synthesized at various nitrogen flows of 0, 10, 20, 30, 40 and 50 sccm at 300K……………..………….45 Fig. 4.3 The relation of the blue light intensity (IB) and red light intensity (IR) emitted by a-C:N, and the ratio (IB/IR) with various nitrogen flows…………………………………………………………..….45 Fig. 4.4 The variety of the Raman spectroscopy from 0-50 sccm nitrogen flows……………………………………………………………...47 Fig. 4.5 The deconvolution of the Raman spectroscopy of a-C:N films synthesized at 50 sccm nitrogen flows………………………...…47 Fig. 4.6 XPS survey scan spectra for the film at various nitrogen flows of 0, 10, 20, 30, 40 and 50 sccm…………….....……………………49 Fig. 4.7 The FTIR spectra of the a-C:N films synthesized at (a) 0, (b) 10 and (c) 50 sccm nitrogen flows……………………….………….52 Fig. 5.1 A simplified model of possible electronic transitions of the a-C:N film…………………………………………………………….…54 Fig. 5.2 Plot of (αhυ)1/2 vs. hυ of the a-C:N film…………………...56 Fig. 5.3 Plot of Tauc gap vs. N/C ratio of the a-C:N film………………57 Fig. 5.4 Raman spectroscopy of the a-C:N films in different N/C ratio of 0.05, 0.12, 0.34 and 0.56…………………………………………59 Fig. 6.1 Typical SIMS depth profile for the a-C:N:B film……….……..62 Fig. 6.2 Typical (a) C1s, (b) N1s and (c) B1s core level XPS spectra of the a-C:N:B film……………..………………………………..64,65 Fig. 6.3 Differences in the Raman spectroscopy of the a-C:N and a-C:N:B film……………………………………………………..67 Fig. 6.4 FTIR spectra of the (a) a-C:N and (b) a-C:N:B films………….69 Fig. 6.5 CL spectra of the a-C:N and a-C:N:B films…………………....71 Fig. 6.6 (a) J-E curves of the a-C:N and a-C:N:B films (b) Fowler-Nordheim (F-N) plots of the a-C:N and a-C:N:B films....74 Fig. 6.7 AFM 3D image of the (a) a-C:N film and (b) a-C:N:B film…..77 Fig. 7.1 The chemical formulas of Polyethylene terephthalate…………79 Fig. 7.2 Typical top-view SEM image for the (a) a-C:F films and (b) a-C:F NPs films…………………………………………………..82 Fig. 7.3 The growth mechanism of a-C:F films and a-C:F nanoparticles films………………………………………………………………83 Fig. 7.4 AFM 3D image of the (a) PET and (b) a-C:F NPs films coated on PET…………………………………..………….………………..84 Fig. 7.5 XPS survey scan spectra for the film at various CF4 flows of 20, 30, 40, 50 and 60 sccm……………………….…………………..86 Fig. 7.6 Typical core level XPS spectra of the a-C:F films formed at various CF4 flows of 20, 30, 40, 50 and 60 sccm (a) C(1s) and (b) F(1s)……………………………………………………………...87 Fig. 7.7 MAC glancing incident X-ray pattern of (a) the PET substrates and (b) the a-C:F NPs films coated on PET……………………...89 Fig. 7.8 Differences in the Raman spectroscopy of the PET and a-C:F NPs films coated on PET……………….………………………..89 Fig. 7.9 (a) CL spectra of a-C:F films synthesized at various CF4 flows of 20, 30, 40, 50 and 60 sccm at 300K (b) The relation of the orange light intensity (Iorange) and red light intensity (Ired) emitted by a-C:F films, and the ratio (Iorange/Ired) with various CF4 flows…………….92

    [1] Liu AY, Cohen ML. “Prediction of new low compressibility solids” Science 245(1989)841.
    [2] Budinski KG. “Fluorocarbon coatings for wear applications” J. Vac. Sci. Technol. 12(1975)786.
    [3] Lee CC, Ho JC, Huang LY, Hu TS, Wang YW, Hsieh CC et al. “Active-matrix display driven by organic thin-film transistors on flexible substrate” IDW04 conference. 2004; p. 351.
    [4] Tang CW, VanSlyke SA. “Organic electroluminescent diodes” Appl. Phys. Lett. 51(1987)913.
    [5] Liu XW, Tseng CT, Lin JH, Chao LT, Shih HC. “Surf. Optical properties of amorphous carbon nitride synthesized on Si by ECR-CVD” Surf. Coat. Technol. 135(2001)184.
    [6] Chuang CC, Huang JH, Chen WJ, Lee CC, Chang YY. “Role of amorphous carbon nanowires in reducing the turn-on field of carbon films prepared by microwave-heated CVD” Diamond Relat. Mater. 13(2004)1012.
    [7] Liu XW, Tsai SH, Lee LH, Yang MX, Yang ACM, Lin IN, Shih HC. “Electron field emission from amorphous carbon nitride synthesized by electron cyclotron resonance plasma” J. Vac. Sci. Technol. B 18(2000)1840.
    [8] Ryu JT, Honda SI, Katayama M, Oura K. “Field electron emission from amorphous carbon thin films grown by RF magnetron sputtering” Curr. Appl. Phys. 5(2005)387.
    [9] Zhang YB, Lau SP, Huang L, Sun Z, Tay BK. “Microstructure effect on field emission from tetrahedral amorphous carbon films annealed in nitrogen and acetylene ambient” Diamond Relat. Mater. 13(2004)133.
    [10] Liu AY, Cohen ML. “Prediction of new low compressibility solids” Science 245(1989)841.
    [11] Gao F, He J, Wu E, Liu S, Yu D, Li D, Zhang S, Tian Y. “Hardness of covalent crystals” Phys. Rev. Lett. 91(2003)0155021.
    [12] Whitmell DS, Williamson R. “The deposition of hard surface layers by hydrocarbon cracking in a glow discharge” Thin Solids Films 35(1976)255.
    [13] Dischler B, Bubenzer A, Koidl P. “Hard carbon coatings with low optical absorption” Appl. Phys. Lett. 42(1983)636.
    [14] Matsumoto O, Toshima H, Kanzaki Y. “Effect of dilution gases in methane on the deposition of diamond-like carbon in a microwave discharge” Thin Solid Films 128(1985)341.
    [15] Piazza F, Golanski A, Schulze S, Relihan G. “Transpolyacetylene chains in hydrogenated amorphous carbon films free of nanocrystalline diamond” Appl. Phys. Lett. 82(2003)358.
    [16] Papadimitriou D, Roupakas G, Dimitriadis CA , Logothetidis S. “Raman scattering and photoluminescence of nitrogenated amorphous carbon films” J. Appl. Phys. 92(2002)870.
    [17] Mori T, Namba Y. “Hard diamondlike carbon films deposited by ionized deposition of methane gas” J. Vac. Sci. Technol. A 1(1983)23.
    [18] Aisenberg S, Chabot RW. “Ion-beam deposition of thin films of diamondlike carbon” J. Appl. Phys. 42(1971)2953.
    [19] Zhou Z, Xia L. “The investigation of carbon nitride films prepared at various arc currents by vacuum cathode arc method” J. Phys. D: Appl. Phys. 35(2002)1991.
    [20] Niu C, Lu YZ, Lieber CM. “Experimental realization of the covalent solid carbon nitride” Science 261(1993)334.
    [21] Zhang XW, Ke N, Cheung WY, Wong SP. “Synthesis and structure of nitrogenated tetrahedral amorphous carbon thin films prepared by a pulsed filtered vacuum arc deposition” Diamond Relat. Mater. 12(2003)1.
    [22] Umeda S, Yuki T, Sugiyama T, Sugino T. “Boron carbon nitride film with low dielectric constant as passivation film for high speed electronic devices” Diamond Relat. Mater. 13(2004)1135.
    [23] Sugiyama T, Tai T, Sugino T. “Effect of annealing on dielectric constant of boron carbon nitride films synthesized by plasma-assisted chemical vapor deposition” Appl. Phys. Lett. 80(2002)4214.
    [24] Chien SC, Chattopadhyay S, Chen LC, Lin ST, Chen KH. “Mechanical properties of amorphous boron carbon nitride films produced by dual gun sputtering” Diamond Relat. Mater. 12(2003)1463.
    [25] Dinescu M, Perrone A, Caricato AP, Mirenghi L, Gerardi C, Ghica C, et al. “Boron carbon nitride films deposited by sequential pulses laser deposition” Appl. Surf. Sci. 127-129(1998)692.
    [26] Kim DH, Byon E, Lee S, Kim JK, Ruh H. “Characterization of ternary boron carbon nitride films synthesized by RF magnetron sputtering” Thin Solid Films 447-448(2004)192.
    [27] Yokomichi H, Funakawa T, Masuda A. “Preparation of boron-carbon-nitrogen thin films by magnetron sputtering” Vacuum 66(2002)245.
    [28] Lai SH, Chang KL, Shih HC, Huang KP, Lin P. “Electron field emission from various morphologies of fluorinated amorphous carbon nanostructures” Appl. Phys. Lett. 85(2004)6248.
    [29] Boxman RL, Goldsmith S. “Macroparticle contamination in cathodic arc coatings: generation, transport and control” Surf. Coat. Technol. 52(1992)39.
    [30] Ma ZQ, Kido Y. “The atomic displacements on surface generated by low-energy projectile” Thin Solid Films 359(2000)288.
    [31] Boxman RL, Martin PJ, Sanders D (Eds.). “Handbook of Vacuum Arc Science and Technology” Noyes, New York 1996.
    [32] Siemroth P, Schülke T, Witke T. “High-Current arc–a new source for high–rate deposition” Surf. Coat. Technol. 68(1994)314.
    [33] Schuelke T, Writke T, Scheibe HJ, Siemroth P, Schultrich B, Zimmer O. “Comparison of DC and AC arc films deposition techniques” J. Vetter. Surf. Coat. Technol. 120(1999)226.
    [34] Erturk E, Heuvel HJ, Dedrich HG. “CRN and (Ti, Al) N coatings deposited by the steered arc and random arc techniques” Surf. Coat. Technol. 39(1989)455.
    [35] Steffens HD, Mack M, Moehwald K, Reichel K. “Reduction of droplet emission in random arc technology” Surf. Coat. Technol. 46(1991)65.
    [36] Aksenov II, Strel’nitskij VE, Vasilyev VV, Zaleskij DY. “Efficiency of magnetic plasma filters” Surf. Coat. Technol. 163-164(2003)118.
    [37] Aksenov II, Belous VA, Vasil’eV VV, Volkov YY, Strel’nitskij VE. “A rectilinear plasma filtering system for vacuum-arc deposition of diamond-like carbon coatings” Diamond Relat. Mater. 8(1999)468.
    [38] Miernik K, Walkowicz J. “Spatial distribution of microdroplets generated in the cathode spots of vacuum arcs” Surf. Coat. Technol. 125(2000)161.
    [39] Yoon JS, Han JG. “The ion current density and spectroscopic study in a straight magnetic filtering arc deposition system” Surf Coat. Technol. 94(1997)201.
    [40] Anders A, Macgill RA. “Twist filter for the removal of macroparticles from cathodic arc plasmas” Surf. Coat. Technol. 133-134(2000)96.
    [41] Anders S, Anders A, Dickenson MR, Macgill R, Brown IG. “S-shaped magnetic macroparticle filter for cathodic arc deposition” IEEE. Trans. Plasma Sci 25(1997)670.
    [42] Marton D, Boyd KJ, Al-Bayati AH, Todorov SS, Rabalaais JW. “Carbon nitride deposited using energetic species: A two-phase system” Phys. Rev. Lett. 73(1994)118.
    [43] Amaratunga GAJ, Silva SRP. “Nitrogen containing hydrogenated amorphous carbon for thin-film field emission cathodes” Appl. Phys. Lett. 68(1996)2529.
    [44] Zhou XT, Meng XM, Meng FY. Li Q, Bello I, Zhang WJ. “Formation and structure of a-C/nanodiamond composite films by prolonged bias enhanced nucleation” Diamond Relat. Mater. 12(2003)1640.
    [45] Satyanarayana BS, Hart A, Milne WI, Robertson J. “Field emission from tetrahedral amorphous carbon. Diamond Relat. Mater” 7(1998):656.
    [46] Zhang XW, Ke N, Cheung WY, Wong SP. “Synthesis and structure of nitrogenated tetrahedral amorphous carbon thin films prepared by a pulsed filtered vacuum arc deposition” Diamond Relat. Mater. 12(2003)1.
    [47] Vossen JL, Kern W. “Thin Film Process II” Academic Press. Inc. 1991 p. 210.
    [48] Tamor MA, Vassell WC. Raman “``fingerprinting'' of amorphous carbon films” J. Appl. Phys. 76(1994)3823.
    [49] Gomez FJ, Prieto P, Elizalde E, Piqueras J. “SiCN alloys deposited by electron cyclotron resonance plasma chemical vapor deposition” Appl. Phys. Lett. 69(1996)773.
    [50] Vien DL, Colthup NB, Fateley WG, Grasselli TG. “The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules” Academic Press, Inc. 1991.
    [51] Kaufman JH, Metin S, Saperstein DD. “Symmetry breaking in nitrogen-doped amorphous carbon: Infrared observation of the Raman-active G and D bands” Phys. Rev. B 39(1989)13053.
    [52] Zhu W, Kochanski GP, Jin S. “Low-field electron emission from undoped nanostructured diamond” Science 282(1998)1471.
    [53] Simon SP, Simon JP, Michael DW, John SF, Richard BJ. “Growth of nanocrystalline diamond films for low field electron emission” Diamond Relat. Mater. 8(1999)768.
    [54] Poa CH, Lacerda RG, Cox DC, Silva SRP, Marques FC. “Stress-induced electron emission from nanocomposite amorphous carbon thin films” Appl. Phys. Lett. 81(2002)853.
    [55] Jiang X, Jia CL. “Structure and defects of vapor-phase-grown diamond nanocrystals” Appl. Phys. Lett. 80(2002)2269.
    [56] Berchenko NN, Izhnin II, Savchyn VP, Stakhira JM, Voitsekhovskii AV. “Cathodoluminescence characterization of a compound semiconductor-native dielectric interface” Mater. Sci. Eng. B 44(1997)139.
    [57] Nouiri A, Djemel A, Tarento RJ. “Theoretical calculation of cathodoluminescence intensity in GaAs: Influence of surface defects density (Nt) and concentration (Na)” Microelec. Eng. 51(2000)151.
    [58] Sirimanne PM, Soga T, Jimbo T. “Identification of various luminescence centers in CuI films by cathodoluminescence technique” J. Luminescence 105(2003)105.
    [59] Faure J, Pastre D, Muller D, Troyon M. “Scanning near-field cathodoluminescence microscopy of an Si+ implanted and thermally annealed SiO2 layer” Phys. Lett. A 255(1999)187.
    [60] Bougrine A, El Hichou A, Addou M, Ebothe J, Kachouane A, Troyon M. “Structural, optical and cathodoluminescence characteristics of undoped and tin-doped ZnO thin films prepared by spray pyrolysis” Mater. Chem. Phys. 80(2003):438.
    [61] Honda T, Kimura H, Amahori Y, Kawanishi H. “Cathodoluminescence spectra of GaN powders deposited on glass substrate” J. Luminescence 102(2003)173.
    [62] Kanda H, Watanabe K, Koizumi S, Teraji T. “Characterization of phosphorus doped CVD diamond films by cathodoluminescence spectroscopy and topography” Diamond Relat. Mater. 12(2003):20.
    [63] Fanchini G, Ray SC, Tagliaferro A. “Photoluminescence investigation of carbon nitride-based films deposited by reactive sputtering” Diamond Relat. Mater. 12(2003)1084.
    [64] Zhang M, Nukayama Y, Harada S. “Photoluminescence of hydrogenated amorphous carbon nitride films after ultraviolet light irradiation and thermal annealing” J. Appl. Phys. 86(1999)4971.
    [65] Reyes R, Legnani C, Ribeiro Pinto PM, Cremona M, Araujo PJGD, Achete CA. “Room-temperature low-voltage electroluminescence in amorphous carbon nitride thin films” Appl. Phys. Lett. 82(2003)4017.
    [66] Rodil SE, Ferrari AC, Robertson J, Milne WI. “Raman and infrared modes of hydrogenated amorphous carbon nitride” J. Appl. Phys. 89(2001)5425.
    [67] Pearse RWB, Gaydon AG. “The indentification of molecular spectra” (Fourth Edition), Wiley, New York 1976.
    [68] Robertson J. “Recombination and photoluminescence mechanism in hydrogenated amorphous carbon” Phys. Rev. B 53(1996)16302.
    [69] Fanchini G, Tagliaferro A, Ray SC. “Electronic and vibrational structures of amorphous carbon nitrides” Diamond Relat. Mater. 12(2003)208.
    [70] Hammer P, Victoria NW, Alvarez F. “Electronic structure of hydrogenated carbon nitride films” J. Vac. Sci. Technol. A 16(1998)2941.
    [71] Hsieh WJ, Lin CC, Chen US, Chang YS, Shih HC. “Cathodoluminescence of the a-C:N films deposited by a filtered cathodic arc plasma system” Diamond Relat. Mater. 14(2005)93.
    [72] Rodil SE, Muhl S. “Bonding in amorphous carbon nitride” Diamond Relat. Mater. 13(2004)1521.
    [73] Tauc J. “Amorphous and Liquid Semiconductors” London, Plenum New York 1974 p.159.
    [74] Kim JH, Baik HK. “Structural and optical properties of amorphous hydrogenated carbon nitride films prepared by plasma-enhanced chemical vapor deposition” Solid State Commun. 104(1997)653.
    [75] Beeman D, Silverman J, Lynds R, Anderson MR. “Modeling studies of amorphous carbon” Phys. Rev. B 30(1984)870.
    [76] Ferrari AC, Robertson J. “Interpretation of Raman spetra of disordered and amorphous carbon” Phys. Rev. B 61(2000)14095.
    [77] Chowalla M, Ferrari AC, Robertson J, Amaratunga GAJ. “Evolution of sp2 bonding with deposition temperature in tetrahedral amorphous carbon studied by Raman spectroscopy” Appl. Phys. Lett. 76(2000)1419.
    [78] Logothetidis S. “Optical and electronic properties of amorphous carbon materials” Diamond Relat. Mater. 12(2003)141.
    [79] Fanchini G, Tagliaferro A. “Disorder and urbach energy in hydrogenated amorphous carbon:A phenomenological model” Appl. Phys. Lett. 85(2004)730
    [80] Robertson J. “Diamond-like amorphous carbon” Mater. Sci. Eng. R 37(2002)129.
    [81] Sugino T, Hieda H. “Field emission characteristics of boron carbon nitride films synthesized by plasma-assisted chemical vapor deposition” Diamond Relat. Mater. 9(2000)1233.
    [82] Yuki T, Umeda S, Sugino T. “Electrical and optical characteristics of boron carbon nitride films synthesized by plasma-assisted chemical vapor deposition” Diamond Relat. Mater. 13(2004)1130.
    [83] Watanabe MO, Sasaki T, Itoh S, Mizushima K. “Structural and electrical characterization of BC2N thin films” Thin Solid Films 281-282(1996)334.
    [84] Tabbal M, Merel P, Moisa S, Chaker M, Ricard A, Moisan M. “X-ray photoelectron spectroscopy of carbon nitride films deposited by graphite laser ablation in a nitrogen postdischarge” Appl. Phys. Lett. 69(1996)1698.
    [85] Oliveira MN, Botelho AM, Conde O. “XPS investigation of BxNyCz coatings deposited by laser assisted chemical vapor deposition” Surf. Coat. Technol. 100-101(1998)398.
    [86] Zhou ZF, Bello I, Lei MK, Li KY, Lee CS, Lee ST. “Synthesis and characterization of boron carbon nitride films by radio frequency magnetron sputtering” Surf. Coat. Technol. 128-129(2000)334.
    [87] Wada Y, Yap YK, Yoshimura M, Mori Y, Sasaki T. “The control of B-N and B-C bonds in BCN films synthesized using pulsed laser deposition” Diamond Relat. Mater. 9(2000)620.
    [88] Kusano Y, Evetts JE, Hutchings IM. “Deposition of boron carbon nitride films by dual cathode magnetron sputtering” Thin Solid Films 343-344(1999)250.
    [89] Sugino T, Etou Y, Tai T, Mori H. “Dielectric constant of boron carbon nitride films synthesized by plasma-assisted chemical-vapor deposition” Appl. Phys. Lett. 80(2002)649.
    [90] Nakamura K. “Preparation and properties of boron nitride films by metal organic chemical vapor deposition” J. Electrochem. Soc. 133(1986)1120.
    [91] Yuzuriha TH, Hess DW. “Structural and optical properties of plasma-deposited boron nitride films” Thin Solid Films 140(1986)199.
    [92] Fowler RH, Nordheim L. “Electron emission in intense electric fields” Proc. Roy. Soc. London A 119(1928):173.
    [93] Collins PG, Zettl A. “Unique characteristics of cold cathode carbon-nanotube-matrix field emitters” Phys. Rev. B 55(1997)9391.
    [94] Bonard JM, Salvetat JP, Stockli T, Heer WAD, Forro L, Chatelain A. Apply. Phys. “Field emission from single-wall carbon nanotube films” Lett. 73(1998)918.
    [95] Xu X, Brandes GR. “A method for fabricating large-area, patterned, carbon nanotube field emitters” Apply. Phys. Lett. 74(1999)2549.
    [96] Choi YC, Shin YM, Bae DJ, Lim SC, Lee YH, Lee BS. “Patterned growth and field emission properties of vertically aligned carbon nanotubes” Diamond Relat. Mater. 10(2001)1457.
    [97] Liu XW, Chan LH, Hsieh WJ, Lin JH, Shih HC. “The effect of argon on the electron field emission properties of a-C:N thin films” Carbon 41(2003)1143.
    [98] Chan LH, Hong KH, Xiao DQ, Hsieh WJ, Lai SH, Shih HC. “Role of extrinsic atoms on the morphology and field emission properties of carbon nanotubes” Appl. Phys. Lett. 82(2003)4334.
    [99] Cheung JH, Fou AF, Rubner MF. “Molecular self-assembly of conducting polymers” Thin Solid Films 244(1994)985.
    [100] Limare A, Duvanut T, Henry JF, Bissieux C. “Non-contact photopyroelectric method applied to thermal and optical characterization of textiles. Four-flux modeling of a scattering sample” Internat. J. Therm. Sci. 42(2003)951.
    [101] Hong H, Davidov D, Avny Y, Chayet H, Faraggi EZ, Neumann R. “Electroluminescence, photoluminescence and x-ray reflectivity studies of self-assembled ultra-thin films” Adv. Mater. 7(1995)846.
    [102] Kotowa JS. “Biodeterioration of textiles” Internat. Biodeterioration and Biodegradation 53(2004)165.
    [103] Catrysse M, Puers R, Hertleer C, Langenhove LV, Egmond HV, Matthys D. “Towards the integration of textile sensors in a wireless monitoring suit” Sensors and Actuators A 114(2004)302.
    [104] Balasubramanian S, Wang X, Wang HC, Yang K, Kumar J, Tripathy SK. “Azo Chromophore-Functionalized Polyelectrolytes. 2. Acentric Self-Assembly through a Layer-by-Layer Deposition Process” Chem. Mater. 10(1998)1554.
    [105] Ueda M, Kostov KG, Beloto AF, Leite NF, Grigorov KG. “Surface modification of polyethylene terephthalate by plasma immersion ion implantation” Surf. Coat. Technol. 186(2004)295.
    [106] Sakudo N, Mizutani D, Ohmura Y, Endo H, Yoneda R, Ikenaga N, et al. “Surface modification of PET film by plasma-based ion implantation” Nuclear Instruments and Methods in Physics Research B 206(2003)687.
    [107] Wang J, Huang N, Pan CJ, Kwok SCH, Yang P, Leng YX, et al. “Bacterial repellence from polyethylene terephthalate surface modified by acetylene plasma immersion ion implantation-deposition” Surf. Coat. Technol. 186(2004)299.
    [108] Endo K, Tatsumi T. “Nitrogen doped fluorinated amorphous carbon thin films grown by plasma enhanced chemical vapor deposition for low dielectric constant interlayer dielectrics” Appl. Phys. Lett. 68(1996)3656.
    [109] Jiang L, Cheung R, Brown R, Mount A. “Inductively coupled plasma etching of SiC in SF6/O2 and etch-induced surface chemical bonding modifications” J. Appl. Phys. 93(2003)1376.
    [110] Nanse G, Papirer E, Fioux P, Moguet, Tressaud. “Fluorination of carbon blacks: an X-ray photoelectron spectroscopy study: I. A literature review of XPS studies of fluorinated carbons. XPS investigation of some reference compounds” Carbon 35(1997)175.
    [111] Hattori Y, Watanabe Y, Kawaski S, Okino F, Padhan BK, Kyotani T, et al. “Carbon-alloying of the rear surfaces of nanotubes by direct fluorination” Carbon 37(1999):1033.
    [112] Wang J, Huang N, Yang P, Leng YX, Sun H, Liu ZY, et al. “The effects of amorphous carbon films deposited on polyethylene terephthalate on bacterial adhesion” Biomaterials 25(2004)3161.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE